1
|
Wang Y, Dong H, Qu Y, Zhou Y, Qin J, Li K, Luo C, Ren B, Cao Y, Zhang S, Yin J, Leal WS. Circabidian rhythm of sex pheromone reception in a scarab beetle. Curr Biol 2024; 34:568-578.e5. [PMID: 38242123 DOI: 10.1016/j.cub.2023.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Animals have endogenous clocks that regulate their behavior and physiology. These clocks rely on environmental cues (time givers) that appear approximately every 24 h due to the Earth's rotation; thus, most insects exhibit a circadian rhythm. One notable exception is the scarab beetle, Holotrichia parallela, a severe agricultural pest in China, Japan, South Korea, and India. Females emerge from the soil every other night, reach the canopy of host plants, evert an abdominal gland, and release a pheromone bouquet comprising l-isoleucine methyl ester (LIME) and l-linalool. To determine whether this circa'bi'dian rhythm affects the olfactory system, we aimed to identify H. parallela sex pheromone receptor(s) and study their expression patterns. We cloned 14 odorant receptors (ORs) and attempted de-orphanizing them in the Xenopus oocyte recording system. HparOR14 gave robust responses to LIME and smaller responses to l-linalool. Structural modeling, tissue expression profile, and RNAi treatment followed by physiological and behavioral studies support that HparOR14 is a sex pheromone receptor-the first of its kind discovered in Coleoptera. Examination of the HparOR14 transcript levels throughout the adult's life showed that on sexually active days, gene expression was significantly higher in the scotophase than in the photophase. Additionally, the HparOR14 expression profile showed a circabidian rhythm synchronized with the previously identified pattern of sex pheromone emission. 48 h of electroantennogram recordings showed that responses to LIME were abolished on non-calling nights. In contrast, responses to the green leaf volatile (Z)-3-henexyl acetate remained almost constant throughout the recording period.
Collapse
Affiliation(s)
- Yinliang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Huanhuan Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yafei Qu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuxin Zhou
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Jianhui Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bingzhong Ren
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yazhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
3
|
Wu G, Su R, Ouyang H, Zheng X, Lu W, Wang X. Antennal Transcriptome Analysis and Identification of Olfactory Genes in Glenea cantor Fabricius (Cerambycidae: Lamiinae). INSECTS 2022; 13:insects13060553. [PMID: 35735890 PMCID: PMC9224838 DOI: 10.3390/insects13060553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary In this study, we conducted antennal transcriptome analysis in Glenea cantor (Cerambycidae: Lamiinae) and identified 76 olfactory-related genes, including 29 odorant binding proteins (OBPs), 14 chemosensory proteins (CSPs), 13 odorant receptors (ORs), 18 ionotropic receptors (IRs) and 2 sensory neuron membrane proteins (SNMPs). We also verified the reliability of transcriptome differential genes by qRT-PCR, which indicated the reliability of the transcriptome. Based on the relative expression of 30 d adults, GcanOBP22 and GcanOBP25 were highly expressed not only in the antennae, but also in the wings and legs. In addition, GcanCSP4 was the highest expression on the female antennae at 12 d. These findings laid the foundation for further research on the mechanism of G. cantor olfactory mechanism at the molecular level. Abstract Glenea cantor Fabricius (Cerambycidae: Lamiinae) is a pest that devastates urban landscapes and causes ecological loss in southern China and Southeast Asian countries where its main host kapok trees are planted. The olfactory system plays a vital role in mating, foraging, and spawning in G. cantor as an ideal target for pest control. However, the olfactory mechanism of G. cantor is poorly understood at the molecular level. In this study, we first established the antennal transcriptome of G. cantor and identified 76 olfactory-related genes, including 29 odorant binding proteins (OBPs), 14 chemosensory proteins (CSPs), 13 odorant receptors (ORs), 18 ionotropic receptors (IRs) and 2 sensory neuron membrane proteins (SNMPs). Furthermore, the phylogenetic trees of olfactory genes were constructed to study the homology with other species of insects. We also verified the reliability of transcriptome differential genes by qRT-PCR, which indicated the reliability of the transcriptome. Based on the relative expression of 30 d adults, GcanOBP22 and GcanOBP25 were highly expressed not only in the antennae, but also in the wings and legs. In addition, GcanCSP4 was the highest expression on the female antennae at 12 d. These findings laid the foundation for further research on the mechanism of G. cantor olfactory mechanism at the molecular level.
Collapse
|
4
|
Identification and Expression Profile of Chemosensory Receptor Genes in Aromia bungii (Faldermann) Antennal Transcriptome. INSECTS 2022; 13:insects13010096. [PMID: 35055940 PMCID: PMC8781584 DOI: 10.3390/insects13010096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
Abstract
The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, 45 AbunORs, 6 AbunGRs and 2 AbunIRs were identified among 42,197 unigenes derived from the antennal transcriptome bioinformatic analysis of A. bungii adults. The sequence of putative Orco (AbunOR25) found in this study is highly conserved with the known Orcos from other Coleoptera species, and these Orco genes might be potentially used as target genes for the future development of novel and effective control strategies. Tissue expression analysis showed that 29 AbunOR genes were highly expressed in antennae, especially in the antennae of females, which was consistent with the idea that females might express more pheromone receptors for sensing pheromones, especially the sex pheromones produced by males. AbunOR5, 29, 31 and 37 were clustered with the pheromone receptors of the cerambycid Megacyllene caryae, suggesting that they might be putative pheromone receptors of A. bungii. All six AbunGRs were highly expressed in the mouthparts, indicating that these GRs may be involved in the taste perception process. Both AbunIRs were shown to be female-mouthparts-biased, suggesting that they might also be related to the tasting processes. Our study provides some basic information towards a deeper understanding of the chemosensing mechanism of A. bungii at a molecular level.
Collapse
|
5
|
Zhu X, Xu B, Qin Z, Kader A, Song B, Chen H, Liu Y, Liu W. Identification of Candidate Olfactory Genes in Scolytus schevyrewi Based on Transcriptomic Analysis. Front Physiol 2021; 12:717698. [PMID: 34671270 PMCID: PMC8521011 DOI: 10.3389/fphys.2021.717698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022] Open
Abstract
The bark beetle, Scolytus schevyrewi (S. schevyrewi), is an economically important pest in China that causes serious damage to the fruit industry, particularly, in Xinjiang Province. Chemical signals play an important role in the behavior of most insects, accordingly, ecofriendly traps can be used to monitor and control the target pests in agriculture. In order to lay a foundation for future research on chemical communication mechanisms at the molecular level, we generate antennal transcriptome databases for male and female S. schevyrewi using RNA sequencing (RNA-seq) analysis. By assembling and analyzing the adult male and female antennal transcriptomes, we identified 47 odorant receptors (ORs), 22 ionotropic receptors (IRs), 22 odorant-binding proteins (OBPs), and 11 chemosensory proteins (CSPs). Furthermore, expression levels of all the candidate OBPs and CSPs were validated in different tissues of male and female adults by semiquantitative reverse transcription PCR (RT-PCR). ScosOBP2 and ScosOBP18 were highly expressed in female antennae. ScosCSP2, ScosCSP3, and ScosCSP5 were specifically expressed in the antennae of both males and females. These results provide new potential molecular targets to inform and improve future management strategies of S. schevyrewi.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bingqiang Xu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhenjie Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Abudukyoum Kader
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bo Song
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haoyu Chen
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
6
|
Pan Y, Zhang X, Wang Z, Qi L, Zhang X, Zhang J, Xi J. Identification and analysis of chemosensory genes encoding odorant-binding proteins, chemosensory proteins and sensory neuron membrane proteins in the antennae of Lissorhoptrus oryzophilus. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 112:1-11. [PMID: 34588009 DOI: 10.1017/s0007485321000857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a destructive pest that causes damage to rice crops worldwide. The olfactory system is critical for host or mate location by weevils, but only limited information about the molecular mechanism of olfaction-related behaviour has been reported in this insect. In this study, we conducted SMRT-seq transcriptome analysis and obtained 54,378 transcripts, 38,706 of which were annotated. Based on these annotations, we identified 40 candidate chemosensory genes, including 31 odorant-binding proteins (OBPs), six chemosensory proteins (CSPs) and three sensory neuron membrane proteins (SNMPs). Phylogenetic analysis showed that LoryOBPs, LoryCSPs and LorySNMPs were distributed in various clades. The results of tissue expression patterns indicated that LoryOBPs were highly abundant in the antennae, whereas LoryCSPs were highly abundant not only in the antennae but also in the abdomen, head and wings. Our findings substantially expand the gene database of L. oryzophilus and may serve as a basis for identifying novel targets to disrupt key olfactory genes, potentially providing an eco-friendly strategy to control this pest in the future.
Collapse
Affiliation(s)
- Yu Pan
- College of Plant Science, Jilin University, Changchun130062, PR China
| | - Xinxin Zhang
- College of Plant Science, Jilin University, Changchun130062, PR China
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhun Wang
- Changchun Customs Technology Center, Changchun, China
| | - Lizhong Qi
- College of Plant Science, Jilin University, Changchun130062, PR China
| | - Xinsheng Zhang
- College of Plant Science, Jilin University, Changchun130062, PR China
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun130062, PR China
| |
Collapse
|
7
|
Yi J, Wang S, Wang Z, Wang X, Li G, Zhang X, Pan Y, Zhao S, Zhang J, Zhou JJ, Wang J, Xi J. Identification of Candidate Carboxylesterases Associated With Odorant Degradation in Holotrichia parallela Antennae Based on Transcriptome Analysis. Front Physiol 2021; 12:674023. [PMID: 34566671 PMCID: PMC8461172 DOI: 10.3389/fphys.2021.674023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/01/2021] [Indexed: 12/04/2022] Open
Abstract
Insects rely on their olfactory systems in antennae to recognize sex pheromones and plant volatiles in surrounding environments. Some carboxylesterases (CXEs) are odorant-degrading enzymes (ODEs), degrading odorant signals to protect the olfactory neurons against continuous excitation. However, there is no report about CXEs in Holotrichia parallela, one of the most major agricultural underground pests in China. In the present study, 20 candidate CXEs were identified based on transcriptome analysis of female and male antennae. Sequence alignments and phylogenetic analysis were performed to investigate the characterization of these candidate CXEs. The expression profiles of CXEs were compared by RT-qPCR analysis between olfactory and non-olfactory tissues of both genders. HparCXE4, 11, 16, 17, 18, 19, and 20 were antenna-biased expressed genes, suggesting their possible roles as ODEs. HparCXE6, 10, 11, 13, and 16 showed significantly higher expression profiles in male antennae, whereas HparCXE18 was expressed more in female antennae. This study highlighted candidate CXE genes linked to odorant degradation in antennae, and provided a useful resource for further work on the H. parallela olfactory mechanism and selection of target genes for integrative control of H. parallela.
Collapse
Affiliation(s)
- Jiankun Yi
- College of Plant Science, Jilin University, Changchun, China.,School of Life Science, Huizhou University, Huizhou, China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Zhun Wang
- College of Plant Science, Jilin University, Changchun, China.,Changchun Customs Technology Center, Changchun, China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Gongfeng Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xinxin Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Yu Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Shiwen Zhao
- College of Plant Science, Jilin University, Changchun, China
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Jing-Jiang Zhou
- College of Plant Science, Jilin University, Changchun, China.,Rothamsted Research, University of Hertfordshire, Harpenden, United Kingdom
| | - Jun Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
8
|
Li H, Li W, Miao C, Wang G, Zhao M, Yuan G, Guo X. Identification of the differences in olfactory system between male and female oriental tobacco budworm Helicoverpa assulta. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21829. [PMID: 34191347 DOI: 10.1002/arch.21829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The olfactory system of insects facilitates their search for host and mates, hence it plays an essential role for insect survival and reproduction. Insects recognize odor substances through olfactory neurons and olfactory genes. Previous studies showed that there are significant sex-specific differences in how insects identify odorant substances, especially sex pheromones. However, whether the sex-specific recognition of odorant substances is caused by differences in the expression of olfaction-related genes between males and females remains unclear. To clarify this problem, the whole transcriptome sequence of the adult Helicoverpa assulta, an important agricultural pest of tobacco and other Solanaceae plants, was obtained using Pacbio sequencing. RNA-seq analysis showed that there were 27 odorant binding proteins (OBPs), 24 chemosensory proteins, 4 pheromone-binding proteins (PBPs), 68 odorant receptors and 2 sensory neuron membrane proteins (SNMPs) genes, that were expressed in the antennae of male and female H. assulta. Females had significantly higher expression of General odorant-binding protein 1-like, OBP, OBP3, PBP3 and SNMP1 than males, while males had significantly higher expression of GOBP1, OBP7, OBP13, PBP2 and SNMP2. These results improve our understanding of mate search and host differentiation in H. assulta.
Collapse
Affiliation(s)
- Haichao Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences/Institute of Palnt Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weizheng Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Changjian Miao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gaoping Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Man Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guohui Yuan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xianru Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Identification and motif analyses of candidate nonreceptor olfactory genes of Dendroctonus adjunctus Blandford (Coleoptera: Curculionidae) from the head transcriptome. Sci Rep 2020; 10:20695. [PMID: 33244016 PMCID: PMC7691339 DOI: 10.1038/s41598-020-77144-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
The round-headed pine beetle Dendroctonus adjunctus, whose dispersion and colonization behaviors are linked to a communication system mediated by semiochemicals, is one of the five most critical primary pests in forest ecosystems in Mexico. This study provides the first head transcriptome analysis of D. adjunctus and the identification of the nonreceptor olfactory genes involved in the perception of odors. De novo assembly yielded 44,420 unigenes, and GO annotations were similar to those of antennal transcriptomes of other beetle species, which reflect metabolic processes related to smell and signal transduction. A total of 36 new transcripts of nonreceptor olfactory genes were identified, of which 27 encode OBPs, 7 encode CSPs, and 2 encode SNMP candidates, which were subsequently compared to homologous proteins from other bark beetles and Coleoptera species by searching for sequence motifs and performing phylogenetic analyses. Our study provides information on genes encoding nonreceptor proteins in D. adjunctus and broadens the knowledge of olfactory genes in Coleoptera and bark beetle species, and will help to understand colonization and aggregation behaviors for the development of tools that complement management strategies.
Collapse
|
10
|
Pan Y, Zhao S, Wang Z, Wang X, Zhang X, Lee Y, Xi J. Quantitative proteomics suggests changes in the carbohydrate metabolism of maize in response to larvae of the belowground herbivore Holotrichia parallela. PeerJ 2020; 8:e9819. [PMID: 32913681 PMCID: PMC7456535 DOI: 10.7717/peerj.9819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
The larvae of Holotrichia parallela, a destructive belowground herbivore, may cause yield losses of up to 20% in maize in a typical year. To understand the protein-level mechanisms governing the response of maize to this herbivore, tandem mass tag (TMT) quantitative proteomics was used for the comparative analysis of protein abundance in the maize roots after H. parallela larval attack. A total of 351 upregulated proteins and 303 downregulated proteins were identified. Pathway enrichment analysis revealed that the differentially abundant proteins (DAPs) were most strongly associated with carbohydrate and energy metabolism pathways, such as glycolysis, pentose phosphate pathway and fructose and mannose metabolism. Most glycolysis-related proteins were significantly induced. In addition, H. parallela larval attack decreased the glucose concentrations in the roots. This study demonstrates that maize can manipulate carbohydrate metabolism by modifying glycolysis and pentose phosphate pathway response to root-feeding herbivorous attackers. The results of this study may help to establish a foundation for further functional studies of key protein-mediated responses to H. parallela larvae in maize.
Collapse
Affiliation(s)
- Yu Pan
- College of Plant Science, Jilin University, ChangChun, China
| | - Shiwen Zhao
- College of Plant Science, Jilin University, ChangChun, China
| | - Zhun Wang
- Changchun Customs Technology Center, ChangChun, China
| | - Xiao Wang
- College of Plant Science, Jilin University, ChangChun, China
| | - Xinxin Zhang
- College of Plant Science, Jilin University, ChangChun, China
| | - Yunshuo Lee
- College of Plant Science, Jilin University, ChangChun, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, ChangChun, China
| |
Collapse
|
11
|
Wang X, Wang S, Yi J, Li Y, Liu J, Wang J, Xi J. Three Host Plant Volatiles, Hexanal, Lauric Acid, and Tetradecane, are Detected by an Antenna-Biased Expressed Odorant Receptor 27 in the Dark Black Chafer Holotrichia parallela. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7316-7323. [PMID: 32551589 DOI: 10.1021/acs.jafc.0c00333] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects rely on olfaction to locate their host plants by antennae in complex chemical environments. Odorant receptor (OR) genes are thought to play a crucial role in the process. ORs function together with odorant coreceptors to determine the specificity and sensitivity of olfactory reception. The dark black chafer, Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae), is a destructive underground pest. To understand the molecular basis of H. parallela olfactory reception, an olfactory-biased expressed odorant receptor HparOR27 and HparOrco (HparOR40) were identified from antennal transcriptome analysis and prediction of the sequence structure. Tissue expression analysis showed that HparOR27 was mainly expressed in adult antennae throughout developmental stages. The functions of HparOR27 were analyzed using the Xenopus laevis oocyte expression system. HparOR27 was broadly responsive to three host plant volatiles, including hexanal, lauric acid, and tetradecane. Electroantennogram tests confirmed that three ligands were electrophysiologically active in antennae of female adults. A Y-tube olfactometer test indicated that hexanal was a repellent for adults of both sexes. Taken together, our data support the identification of odorant receptors and provide a molecular basis for eco-friendly pest control.
Collapse
Affiliation(s)
- Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jiankun Yi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yunshuo Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianan Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jun Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
12
|
Pan Y, Zhao SW, Tang XL, Wang S, Wang X, Zhang XX, Zhou JJ, Xi JH. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore Holotrichia parallela larvae feeding. Genome 2019; 63:1-12. [PMID: 31533014 DOI: 10.1139/gen-2019-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The larvae of Holotrichia parallela, a destructive belowground herbivore, causes tremendous damages to maize plants. However, little is known if there are any defense mechanisms in maize roots to defend themselves against this herbivore. In the current research, we carried out RNA-sequencing to investigate the changes in gene transcription level in maize roots after H. parallela larvae infestation. A total of 644 up-regulated genes and 474 down-regulated genes was found. In addition, Gene ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Weighted gene co-expression network analysis (WGCNA) indicated that peroxidase genes may be the hub genes that regulate maize defenses to H. parallela larvae attack. We also found 105 transcription factors, 44 hormone-related genes, and 62 secondary metabolism-related genes within differentially expressed genes (DEGs). Furthermore, the expression profiles of 12 DEGs from the transcriptome analysis were confirmed by quantitative real-time PCR experiments. This transcriptome analysis provides insights into the molecular mechanisms of the underground defense in maize roots to H. parallela larvae attack and will help to select target genes of maize for defense against belowground herbivory.
Collapse
Affiliation(s)
- Yu Pan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Shi-Wen Zhao
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xin-Long Tang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xin-Xin Zhang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Jing-Jiang Zhou
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
13
|
González-González A, Rubio-Meléndez ME, Ballesteros GI, Ramírez CC, Palma-Millanao R. Sex- and tissue-specific expression of odorant-binding proteins and chemosensory proteins in adults of the scarab beetle Hylamorpha elegans (Burmeister) (Coleoptera: Scarabaeidae). PeerJ 2019; 7:e7054. [PMID: 31223529 PMCID: PMC6571001 DOI: 10.7717/peerj.7054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/02/2019] [Indexed: 12/04/2022] Open
Abstract
In this study, we addressed the sex- and tissue-specific expression patterns of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Hylamorpha elegans (Burmeister), an important native scarab beetle pest species from Chile. Similar to other members of its family, this scarab beetle exhibit habits that make difficult to control the pest by conventional methods. Hence, alternative ways to manage the pest populations based on chemical communication and signaling (such as disrupting mating or host finding process) are highly desirable. However, developing pest-control methods based on chemical communication requires to understand the molecular basis for pheromone recognition/chemical perception in this species. Thus, with the aim of discovering olfaction-related genes, we obtained the first reference transcriptome assembly of H. elegans. We used different tissues of adult beetles from males and females: antennae and maxillary palps, which are well known for embedded sensory organs. Then, the expression of predicted odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) was analyzed by qRT-PCR. In total, 165 transcripts related to chemoperception were predicted. Of these, 16 OBPs, including one pheromone-binding protein (PBP), and four CSPs were successfully amplified by qRT-PCR. All of these genes were differentially expressed in the sensory tissues with respect to the tibial tissue that was used as a control. The single predicted PBP found was highly expressed in the antennal tissues, particularly in males, while several OBPs and one CSP showed male-biased expression patterns, suggesting that these proteins may participate in sexual recognition process. In addition, a single CSP was expressed at higher levels in female palps than in any other studied condition, suggesting that this CSP would participate in oviposition process. Finally, all four CSPs exhibited palp-biased expression while mixed results were obtained for the expression of the OBPs, which were more abundant in the palps than in the antennae. These results suggest that these chemoperception proteins would be interesting novel targets for control of H. elegans, thus providing a theoretical basis for further studies involving new pest control methods.
Collapse
Affiliation(s)
- Angélica González-González
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María E Rubio-Meléndez
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Maule, Chile
| | - Gabriel I Ballesteros
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Claudio C Ramírez
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Rubén Palma-Millanao
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|