1
|
Wang X, Hao J, Zhang C, Zhu P, Gao Q, Liu D, Nie M, Jia J, Qi D. Differences and correlation analysis of feeding habits and intestinal microbiome in Schizopygopsis microcephalus and Ptychobarbus kaznakovi in the upper reaches of Yangtze River. Front Microbiol 2025; 16:1513401. [PMID: 40135055 PMCID: PMC11935114 DOI: 10.3389/fmicb.2025.1513401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Background The intestinal microbiota has co-evolved with the host to establish a stable and adaptive microbial community that is essential for maintaining host health and facilitating food digestion. Food selection is a critical factor influencing variations in gut microbial composition, shaping gut microbiome communities, and determining the ecological niches of fish. Methods In this study, high-throughput amplicon sequencing of 16S rRNA and 18S rRNA was utilized to compare the dietary and gut microbial differences between Schizopygopsis microcephalus and Ptychobarbus kaznakovi, both collected from the same sites in the Tuotuo River and Tongtian River, which are tributaries of the Yangtze River. We compared the microbial community structure, diet composition, and diversity between the two fish species using various analytical methods, including LefSe, α-diversity and β-diversity analyses. Additionally, we constructed co-occurrence networks to determine their correlations. Results and discussion The alpha diversity results indicated that S. microcephalus exhibited higher intestinal microbiota and feeding diversity compared to P. kaznakovi. Furthermore, the beta diversity results revealed significant differences in both intestinal microbiota and eukaryotic communities between the two species. The dominant bacterial phyla in both S. microcephalus and P. kaznakovi included Proteobacteria, Firmicutes, Actinobacteriota, Chloroflexi, and Verrucomicrobiota; however, Firmicutes was significantly more abundant in P. kaznakovi (P = 0.006), while Actinobacteriota was significantly higher (P = 0.019) in S. microcephalus at the phylum level. The primary food sources for S. microcephalus and P. kaznakovi were identified as Streptophyta (54.41%, 77.50%) and Cercozoa (8.67%, 1.94%), with Bacillariophyta (25.65%) was also the main food of constituting a major component of the diet for S. microcephalus. These differences suggested that S. microcephalus and P. kaznakovi occupy distinct dietary niches. To further explore the relationship between gut microbiota and feeding habits, we identified significant correlations between various food components and the gut microbial community through co-occurrence networks. This study enhances our understanding of the co-evolution and co-adaptation between host gut microbiota and feeding behaviors in sympatric fish species.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Jiahui Hao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Cunfang Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Ping Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Dan Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Miaomiao Nie
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Junmei Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
2
|
Ma L, Hahn ME, Karchner SI, Nacci D, Clark BW, Apprill A. Environmental and population influences on mummichog ( Fundulus heteroclitus) gut microbiomes. Microbiol Spectr 2025; 13:e0094724. [PMID: 39868785 PMCID: PMC11878049 DOI: 10.1128/spectrum.00947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
The mummichog, Fundulus heteroclitus, an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds. To understand host population and PCB-126 exposure effects on mummichog gut microbiota, we sampled two populations of wild fish, one from a PCB-contaminated environment (New Bedford Harbor, MA, USA) and the other from a much less polluted location (Scorton Creek, MA, USA), as well as laboratory-reared F2 generation fish originating from each of these populations. We examined the microbes associated with the gut of these fish using amplicon sequencing of bacterial and archaeal small subunit ribosomal RNA genes. Fish living in the PCB-polluted site had high microbial alpha and beta diversity compared to fish from the low PCB site. These differences between wild fish were not present in laboratory-reared F2 fish that originated from the same populations. Microbial compositional differences existed between wild and lab-reared fish, with the wild fish dominated by Vibrionaceae and the lab-reared fish by Enterococceae. These results suggest that mummichog habitat and/or environmental conditions have a stronger influence on the mummichog gut microbiome compared to population or hereditary-based influences. Mummichog are important eco-evolutionary model organisms; this work reveals their importance for exploring host-environmental-microbiome dynamics. IMPORTANCE The mummichog fish, a common resident of North America's east coast estuaries, has evolved the ability to survive in waters contaminated with toxic chemicals that would typically be deadly. Our study investigates how living in and adapting to these toxic environments may affect their gut microbiomes. We compared mummichogs from a polluted area in Massachusetts with those from a non-polluted site and found significant differences in their gut microbes. Interestingly, when we raised the next generation of these fish in a lab, these differences disappeared, suggesting that the environment plays a more crucial role in shaping the gut microbiome than genetics. Understanding these changes helps shed light on how animals and their associated microbiomes adapt to pollution, which can inform conservation efforts and our broader understanding of environmental impacts on host-microbe dynamics.
Collapse
Affiliation(s)
- Lei Ma
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Sibel I. Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Diane Nacci
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Bryan W. Clark
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Amy Apprill
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
3
|
Ma B, Zhang J, Li D, Chu Z, Liu J, Jin J, Zhong L. Comparative Analysis of Intestinal Microbiota in Wild, Domesticated, and Cultured Gymnocypris potanini firmispinatus. BIOLOGY 2024; 13:983. [PMID: 39765650 PMCID: PMC11727486 DOI: 10.3390/biology13120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
The impact of the living environments on the intestinal microbiota of Gymnocypris potanini firmispinatus was studied by analyzing intestinal microbiota diversity, composition, and potential function among wild, domesticated, and cultured groups. The results showed that the fish living in the wild environment exhibited the highest alpha diversity of intestinal microbiota. Intestinal microbial communities in the three groups clustered by living environment, with domesticated and cultured groups showing higher similarity. The dominant phylum in the wild group was Proteobacteria, whereas Fusobacteria and Proteobacteria were the predominate bacteria in the domesticated and cultured groups. RsaHF231, Actinobacteria, Fusobacteria, Cyanobacteria, and Firmicutes were the five key bacteria differentially expressed among the groups. Functional prediction revealed significant variation in the L-cysteine degradation III pathway (PWY-5329) between wild and domesticated groups, and in the vitamin E biosynthesis pathway (PWY-1422) between wild and cultured groups (p < 0.05). These findings highlight the differences in microbiota communities between wild and farmed fish, which are essential for enhancing the cultivation of G. p. firmispinatus and for the formulation of specific probiotics and functional feeds.
Collapse
Affiliation(s)
- Baoshan Ma
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; (B.M.); (J.Z.); (Z.C.)
| | - Jiaqi Zhang
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; (B.M.); (J.Z.); (Z.C.)
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (J.L.)
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (J.L.)
| | - Zhipeng Chu
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; (B.M.); (J.Z.); (Z.C.)
| | - Jieya Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (J.L.)
- College of Life Sciences and Technology, Tarim University, Alar 843300, China
| | - Jiali Jin
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; (B.M.); (J.Z.); (Z.C.)
| | - Liqiao Zhong
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; (B.M.); (J.Z.); (Z.C.)
| |
Collapse
|
4
|
Mills M, Mollenkopf D, Wittum T, Sullivan MP, Lee J. One Health Threat of Treated Wastewater Discharge in Urban Ohio Rivers: Implications for Surface Water and Fish Gut Microbiome and Resistome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39014939 DOI: 10.1021/acs.est.3c09070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Wastewater treatment plants (WWTPs) are thought to be a major disseminating source of antibiotic resistance (AR) to the environment, establishing a crucial connection between human and environmental resistome. The objectives of this study were to determine how wastewater effluents impact microbiome and resistome of freshwater and fish, and identify potential AR-carrying clinically relevant pathogens in these matrices. We analyzed wastewater influent and effluent from four WWTPs in three metropolitan areas of Ohio, USA via shotgun metagenomic sequencing. We also sequenced river water and fish guts from three reaches (upstream, at the WWTP outfall, and downstream). Notably, we observed a decline in microbiome diversity and AR gene abundance from wastewater to the receiving river. We also found significant differences by reach and trophic level (diet) in beta-diversity of the fish gut microbiomes. SourceTracker revealed that 0.443 and 0.248 more of the of the fish gut microbiome was sourced from wastewater effluent in fish from the outfall and downstream locations, respectively, compared to upstream fish. Additionally, AR bacteria of public health concern were annotated in effluent and river water samples, indicating potential concern for human exposure. In summary, our findings show the continued role of wastewater as a significant AR reservoir and underscores the considerable impact of wastewater discharge on aquatic wildlife, which highlights the One Health nature of this issue.
Collapse
Affiliation(s)
- Molly Mills
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dixie Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mažeika Patricio Sullivan
- Baruch Institute of Coastal Ecology & Forest Science, Clemson University, Georgetown, South Carolina 29442, United States
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Food Science & Technology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Laue HE, Gilmour AJ, Tirado VM, Romano ME. Conceptualizing the Role of the Microbiome as a Mediator and Modifier in Environmental Health Studies: A Scoping Review of Studies of Triclosan and the Microbiome. Curr Environ Health Rep 2024; 11:30-38. [PMID: 38217674 PMCID: PMC10922364 DOI: 10.1007/s40572-024-00428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
PURPOSE OF REVIEW Triclosan is an endocrine-disrupting antimicrobial additive that is suspected of contributing to antibiotic resistance and altering the microbiome. In this scoping review, we summarize what is known about the association between triclosan exposure and the microbiome using evidence from in vivo and epidemiologic studies. RECENT FINDINGS Our review includes 11 rodent studies, seven fish studies, and five human studies. Evidence from animal studies suggests that triclosan decreases the diversity of the microbiome, although only one epidemiologic study agreed. Most studies suggest that triclosan alters the microbial community beta diversity, but disagree on which taxa contributed to compositional differences. Taxa in the Bacteroidetes, Firmicutes, and Proteobacteria may be more influenced by triclosan than those in other phyla. Studies on triclosan and the microbiome were scarce and were inconclusive as to the effects of triclosan on the microbiome. Additional research is needed to clarify windows of heightened susceptibility of the microbiome to triclosan. We recommend guidelines for future microbiome research in environmental health to increase comparability across studies.
Collapse
Affiliation(s)
- Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, One Medical Center Dr, WTRB 700 HB 7927, Lebanon, NH, 03756, USA.
| | - Aislinn J Gilmour
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
6
|
Vaughn SN, Hopper GW, González IS, Bucholz JR, Garrick RC, Lozier JD, Johnson PD, Atkinson CL, Jackson CR. Introduction into natural environments shifts the gut microbiome of captivity-raised filter-feeding bivalves. ISME COMMUNICATIONS 2024; 4:ycae125. [PMID: 39507398 PMCID: PMC11538807 DOI: 10.1093/ismeco/ycae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
The gut microbiome is influenced by host species and the environment, but how the environment influences the microbiome of animals introduced into a new ecosystem has rarely been investigated. Freshwater mussels are aquatic fauna, with some threatened or endangered species propagated in hatcheries and introduced into natural systems as part of conservation efforts. The effects of the environment on the freshwater mussel gut microbiome were assessed for two hatchery-propagated species (Lampsilis ovata, Lampsilis ornata) introduced into rivers within their natural range. Mussels were placed in rivers for 8 weeks, after which one subset was collected, another subset remained in that river, and a third subset was reciprocally transplanted to another river in the same river basin for a further 8 weeks. Gut microbiome composition and diversity were characterized for all mussels. After the initial 8 weeks, mussels showed increased gut bacterial species richness and distinct community composition compared to hatchery mussels, but gut microbiome diversity then decreased for mussels that remained in the same river for all 16 weeks. The gut bacterial community of mussels transplanted between rivers shifted to resemble that of mussels placed initially into the recipient river and that remained there for the whole study. All mussels showed high proportions of Firmicutes in their gut microbiome after 8 weeks, suggesting an essential role of this phylum in the gut of Lampsilis species. These findings show that the mussel gut microbiome shifts in response to new environments and provide insights into conservation strategies that involve species reintroductions.
Collapse
Affiliation(s)
- Stephanie N Vaughn
- Department of Biology, University of Mississippi, University, MS 38677, United States
| | - Garrett W Hopper
- School of Renewable Natural Resources, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, United States
| | | | - Jamie R Bucholz
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, United States
| | - Ryan C Garrick
- Department of Biology, University of Mississippi, University, MS 38677, United States
| | - Jeffrey D Lozier
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, United States
| | - Paul D Johnson
- Alabama Department of Conservation and Natural Resources, Alabama Aquatic Biodiversity Center, Marion, AL 36756, United States
| | - Carla L Atkinson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, United States
| | - Colin R Jackson
- Department of Biology, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
7
|
Turko AJ, Firth BL, Craig PM, Eliason EJ, Raby GD, Borowiec BG. Physiological differences between wild and captive animals: a century-old dilemma. J Exp Biol 2023; 226:jeb246037. [PMID: 38031957 DOI: 10.1242/jeb.246037] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Laboratory-based research dominates the fields of comparative physiology and biomechanics. The power of lab work has long been recognized by experimental biologists. For example, in 1932, Georgy Gause published an influential paper in Journal of Experimental Biology describing a series of clever lab experiments that provided the first empirical test of competitive exclusion theory, laying the foundation for a field that remains active today. At the time, Gause wrestled with the dilemma of conducting experiments in the lab or the field, ultimately deciding that progress could be best achieved by taking advantage of the high level of control offered by lab experiments. However, physiological experiments often yield different, and even contradictory, results when conducted in lab versus field settings. This is especially concerning in the Anthropocene, as standard laboratory techniques are increasingly relied upon to predict how wild animals will respond to environmental disturbances to inform decisions in conservation and management. In this Commentary, we discuss several hypothesized mechanisms that could explain disparities between experimental biology in the lab and in the field. We propose strategies for understanding why these differences occur and how we can use these results to improve our understanding of the physiology of wild animals. Nearly a century beyond Gause's work, we still know remarkably little about what makes captive animals different from wild ones. Discovering these mechanisms should be an important goal for experimental biologists in the future.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Goleta, CA 93117, USA
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Brittney G Borowiec
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| |
Collapse
|
8
|
Romero J, Díaz O, Miranda CD, Rojas R. Red Cusk-Eel ( Genypterus chilensis) Gut Microbiota Description of Wild and Aquaculture Specimens. Microorganisms 2022; 10:microorganisms10010105. [PMID: 35056554 PMCID: PMC8779451 DOI: 10.3390/microorganisms10010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chile has promoted the diversification of aquaculture and red cusk-eel (Genypterus chilensis) is one of the prioritized species. However, many aspects of the biology of the species are unknown or have little information available. These include intestinal microbiota, an element that may play an important role in the nutrition and defense of cultured animals for meat production. This study compares the microbiota composition of the intestinal contents of wild and aquaculture fish to explore the microbial communities present and their potential contribution to the host. DNA was extracted from the intestinal content samples and the V4 region of the 16S rRNA gene was amplified and sequenced using the Ion Torrent platform. After the examination of the sequences, strong differences were found in the composition at the level of phylum, being Firmicutes and Tenericutes the most abundant in aquaculture and wild condition, respectively. At the genus level, the Vagococcus (54%) and Mycoplasma (97%) were the most prevalent in the microbial community of aquaculture and wild condition, respectively. The evaluation of predicted metabolic pathways in these metagenomes showed that in wild condition there is an important presence of lipid metabolism belonging to the unsaturated fatty acid synthesis. In the aquaculture condition, the metabolism of terpenoids and polyketides were relevant. To our knowledge, this is the first study to characterize and compare the intestinal microbiota of red cusk-eel (Genypterus chilensis) of wild and aquaculture origin using high-throughput sequencing.
Collapse
Affiliation(s)
- Jaime Romero
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago 783090, Chile;
- Correspondence: ; Tel.: +56-2-29781524
| | - Osmán Díaz
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago 783090, Chile;
| | - Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; (C.D.M.); (R.R.)
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; (C.D.M.); (R.R.)
| |
Collapse
|
9
|
Bisesi JH, Adamovsky O, Martyniuk CJ. Recent insights from comparative animal microbiomics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100880. [PMID: 34304147 DOI: 10.1016/j.cbd.2021.100880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|