1
|
Vaughan AL, Dhami MK. Can Transcriptomics Elucidate the Role of Regulation in Invasion Success? Mol Ecol 2024:e17583. [PMID: 39545269 DOI: 10.1111/mec.17583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
When a species invades a novel environment, it must bridge the environment-phenotype mismatch in its new range to persist. Contemporary invasion biology research has focused on the role that trait variation and adaptation, and their underlying genomic factors, play in a species' adaptive potential, and thus facilitating invasion. Empirical studies have provided valuable insights into phenotypes that persist and arise in novel environments, coupled with 'omics tools that further the understanding of the contributions of genomic architecture in species establishment. Particularly, the use of transcriptomics to explore the role of plasticity in the initial stages of an invasion is growing. Here, we assess the role of various mechanisms relating to regulation and functional adaptation (often measured via the transcriptome) that support trait-specific plasticity in invasive species, allowing phenotypic variability without directly altering genomic diversity. First, we present a comprehensive review of the studies utilising transcriptomics in invasion biology. Second, we collate the evidence for and against the role of a range of regulatory processes in contributing to invasive species plasticity. Finally, we pose open questions in invasion biology where the use of transcriptome data may be valuable, as well as discuss the methodological limitations.
Collapse
Affiliation(s)
- Amy L Vaughan
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
- School of Biological Sciences, Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Mei X, Huang T, Chen A, Liu W, Jiang L, Zhong S, Shen D, Qiao P, Zhao Q. BmC/EBPZ gene is essential for the larval growth and development of silkworm, Bombyx mori. Front Physiol 2024; 15:1298869. [PMID: 38523808 PMCID: PMC10959570 DOI: 10.3389/fphys.2024.1298869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
The genetic male sterile line (GMS) of the silkworm Bombyx mori is a recessive mutant that is naturally mutated from the wild-type 898WB strain. One of the major characteristics of the GMS mutant is its small larvae. Through positional cloning, candidate genes for the GMS mutant were located in a region approximately 800.5 kb long on the 24th linkage group of the silkworm. One of the genes was Bombyx mori CCAAT/enhancer-binding protein zeta (BmC/EBPZ), which is a member of the basic region-leucine zipper transcription factor family. Compared with the wild-type 898WB strain, the GMS mutant features a 9 bp insertion in the 3'end of open reading frame sequence of BmC/EBPZ gene. Moreover, the high expression level of the BmC/EBPZ gene in the testis suggests that the gene is involved in the regulation of reproduction-related genes. Using the CRISPR/Cas9-mediated knockout system, we found that the BmC/EBPZ knockout strains had the same phenotypes as the GMS mutant, that is, the larvae were small. However, the larvae of BmC/EBPZ knockout strains died during the development of the third instar. Therefore, the BmC/EBPZ gene was identified as the major gene responsible for GMS mutation.
Collapse
Affiliation(s)
- Xinglin Mei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi, China
| | - Weibin Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Li Jiang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Peitong Qiao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Zhai XD, Zhang SY, Chen D, Li WJ, Wang JJ, Wei D. Comparative multi-tissue analyses identify testis-specific serine/threonine protein kinase (TSSK) genes involved in male fertility in the melon fly Zeugodacus cucurbitae. PEST MANAGEMENT SCIENCE 2023; 79:2040-2049. [PMID: 36693781 DOI: 10.1002/ps.7378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Zeugodacus cucurbitae is an agricultural pest species with robust reproductive capabilities capable of causing extensive damage. The advent of novel male fertility-related pest control strategies has been an area of active entomological research focused on the sterile insect technique (SIT) strategy. RESULTS RNA-sequencing analyses were conducted using 16 tissue samples from adult male Z. cucurbitae, leading to the identification of 5338 genes that were differentially expressed between the testes and three other analyzed tissue types. Of these genes, 808 exhibited high levels of testis expression. A quantitative polymerase chain reaction (qPCR) approach was used to validate the expression of ten of these genes selected at random, including ZcTSSK1 and ZcTSSK3, which are testis-specific serine/threonine protein kinase (TSSK) genes. Evaluation via a loss-of-function-based knockdown assay showed that the down-regulation of either of these two genes in males was associated with significantly decreased egg hatching rates. In situ hybridization analyses revealed the expression of both of these transcripts in the transformation zone, and significant decreases in Z. cucurbitae sperm numbers were observed following double-stranded RNA treatment. Together, these results suggested that inhibiting ZcTSSK1 and ZcTSSK3 expression was sufficient to alter male fertility in Z. cucurbitae. CONCLUSION These transcriptional sequencing results provide a foundation for further efforts to clarify the regulators of Z. cucurbitae male fertility. These preliminary analyses of the functions of ZcTSSK family genes as regulators of spermatogenesis underscore their importance in the processes integral to male fecundity and their potential as targets for pest control efforts centered on the genetic manipulation of males. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Di Zhai
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Su-Yun Zhang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Wei-Jun Li
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|