Lee Y, Lee JS. Blue carbon ecosystems for hypoxia solution: how to maximize their carbon sequestration potential.
MARINE ENVIRONMENTAL RESEARCH 2025;
209:107202. [PMID:
40367633 DOI:
10.1016/j.marenvres.2025.107202]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025]
Abstract
Blue carbon refers to the carbon captured and stored by coastal and oceanic ecosystems, such as mangroves, seagrasses, and salt marshes. These ecosystems are vital for biodiversity and play a crucial role in sequestering carbon dioxide from the atmosphere, helping to mitigate climate change, which can also provide economic value by evaluating payment for ecosystem services (PES) schemes. Additionally, they help regulate dissolved organic carbon, mitigate eutrophication, and improve water quality, reducing the impact of global deoxygenation. Conserving and restoring blue carbon ecosystems are vital for mitigating hypoxia, enhancing biodiversity, and supporting various ecosystem services. Moreover, genomic research on blue carbon plants and microbes reveals adaptive traits that enhance resilience to hypoxia and environmental stress. Integrating conservation, restoration, and molecular approaches will maximize their carbon sequestration potential, ensuring ecological stability and climate adaptation. This review aims to provide an overview of blue carbon and its significance, particularly in addressing hypoxia, highlighting the critical need for investigating hypoxia responses and microbial interactions to fully understand the mechanisms of carbon sequestration and hypoxia mitigation.
Collapse