1
|
Anderson JL, Kruisselbrink TM, Lisi EC, Hughes TM, Steyermark JM, Winkler EM, Berg CM, Vierkant RA, Gupta R, Ali AH, Faubion SS, Aoudia SL, McAllister TM, Farrugia G, Stewart AK, Lazaridis KN. Clinically Actionable Findings Derived From Predictive Genomic Testing Offered in a Medical Practice Setting. Mayo Clin Proc 2021; 96:1407-1417. [PMID: 33890576 DOI: 10.1016/j.mayocp.2020.08.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To assess the presence of clinically actionable results and other genetic findings in an otherwise healthy population of adults seen in a medical practice setting and offered "predictive" genomic testing. PATIENTS AND METHODS In 2014, a predictive genomics clinic for generally healthy adults was launched through the Mayo Clinic Executive Health Program. Self-identified interested patients met with a genomic nurse and genetic counselor for pretest advice and education. Two genome sequencing platforms and one gene panel-based health screen were offered. Posttest genetic counseling was available for patients who elected testing. From March 1, 2014, through June 1, 2019, 1281 patients were seen and 301 (23.5%) chose testing. Uptake rates increased to 36.3% [70 of 193]) in 2019 from 11.8% [2 of 17] in 2014. Clinically actionable results and genetic findings were analyzed using descriptive statistics. RESULTS Clinically actionable results were detected in 11.6% of patients (35 of 301), and of those, 51.7% (15 of 29) with a cancer or cardiovascular result = did not have a personal or family history concerning for a hereditary disorder. The most common actionable results were in the BCHE, BRCA2, CHEK2, LDLR, MUTYH, and MYH7 genes. A carrier of at least one recessive condition was found in 53.8% of patients (162 of 301). At least one variant associated with multifactorial disease was found in 44.5% (134 of 301) (eg, 25 patients were heterozygous for the F5 factor V Leiden variant associated with thrombophilia risk). CONCLUSION Our predictive screening revealed that 11.6% of individuals will test positive for a clinically actionable, likely pathogenic/pathogenic variant. This finding suggests that wider knowledge and adoption of predictive genomic services could be beneficial in medical practice, although additional studies are needed.
Collapse
Affiliation(s)
| | | | - Emily C Lisi
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | | | - Erin M Winkler
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Corinne M Berg
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Robert A Vierkant
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Ruchi Gupta
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Ahmad H Ali
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | - Stacy L Aoudia
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - A Keith Stewart
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Konstantinos N Lazaridis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
2
|
Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 2014; 148:34-46. [PMID: 25448037 DOI: 10.1016/j.pharmthera.2014.11.011] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Phase I clinical trials have shown that pure human butyrylcholinesterase (BChE) is safe when administered to humans. A potential therapeutic use of BChE is for prevention of nerve agent toxicity. A recombinant mutant of BChE that rapidly inactivates cocaine is being developed as a treatment to help recovering cocaine addicts avoid relapse into drug taking. These clinical applications rely on knowledge of the structure, stability, and properties of BChE, information that is reviewed here. Gene therapy with a vector that sustains expression for a year from a single injection is a promising method for delivering therapeutic quantities of BChE.
Collapse
Affiliation(s)
- Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| |
Collapse
|
3
|
Fernández Prieto RM, Ramallo Bravo A, Carmona Carmona G, Carrasco Jiménez MS. [Update on the current role of plasma cholinesterase]. ACTA ACUST UNITED AC 2012; 58:508-16. [PMID: 22141219 DOI: 10.1016/s0034-9356(11)70126-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antagonism of steroidal nondepolarizing neuromuscular blockers (NDMBs) moved forward recently with the introduction of sugammadex, the only drug able to immediately reverse the effects of curarization produced by NDMBs. This advance has necessitated reflection on the future role of pseudocholinesterase. In spite of the side effects of succinylcholine and published opinions on its use, this NDMB continues to be used in clinical anesthesia. Pseudocholinesterase is mainly found in the liver, plasma, and nervous system. The enzyme is synthesized in the liver in greater amounts than required although certain conditions lead to deficiency, which is usually asymptomatic. The only clinical expression is the apnea which develops after administration of succinycholine because this NDMB cannot be metabolized. In some patients, slight reductions in the antagonism of succinylcholine lead to rising neuromuscular concentrations of the drug in accordance with the degree and duration of the blockade. We review the various forms of pseudocholinesterase deficiency, including a discussion of genetic variants, clinical manifestations, and management. In addition to discussing the diagnosis of this condition and the clinical implications, we highlight the importance of practice protocols and access to a referral laboratory if one is not available within the immediate hospital.
Collapse
Affiliation(s)
- R M Fernández Prieto
- Servicio de Anestesia Reanimación y Tratamiento del Dolor, Hospital Universitario Puerto Real, Cádiz.
| | | | | | | |
Collapse
|
4
|
Garcia DF, Oliveira TG, Molfetta GA, Garcia LV, Ferreira CA, Marques AA, Silva WA. Biochemical and genetic analysis of butyrylcholinesterase (BChE) in a family, due to prolonged neuromuscular blockade after the use of succinylcholine. Genet Mol Biol 2011; 34:40-4. [PMID: 21637541 PMCID: PMC3085371 DOI: 10.1590/s1415-47572011000100008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 10/22/2010] [Indexed: 11/22/2022] Open
Abstract
Butyrylcholinesterase (BChE) is a plasma enzyme that catalyzes the hydrolysis of choline esters, including the muscle-relaxant succinylcholine and mivacurium. Patients who present sustained neuromuscular blockade after using succinylcholine usually carry BChE variants with reduced enzyme activity or an acquired BChE deficiency. We report here the molecular basis of the BCHE gene underlying the slow catabolism of succinylcholine in a patient who underwent endoscopic nasal surgery. We measured the enzyme activity of BChE and extracted genomic DNA in order to study the promoter region and all exons of the BCHE gene of the patient, her parents and siblings. PCR products were sequenced and compared with reference sequences from GenBank. We detected that the patient and one of her brothers have two homozygous mutations: nt1615 GCA > ACA (Ala539Thr), responsible for the K variant, and nt209 GAT > GGT (Asp70Gly), which produces the atypical variant A. Her parents and two of her brothers were found to be heterozygous for the AK allele, and another brother is homozygous for the normal allele. Sequence analysis of exon 1 including 5'UTR showed that the proband and her brother are homozygous for -116GG. The AK/AK genotype is considered the most frequent in hereditary hypocholinesterasemia (44%). This work demonstrates the importance of defining the phenotype and genotype of the BCHE gene in patients who are subjected to neuromuscular block by succinylcholine, because of the risk of prolonged neuromuscular paralysis.
Collapse
Affiliation(s)
- Daniel Fantozzi Garcia
- Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
5
|
Parnas ML, Procter M, Schwarz MA, Mao R, Grenache DG. Concordance of butyrylcholinesterase phenotype with genotype: implications for biochemical reporting. Am J Clin Pathol 2011; 135:271-6. [PMID: 21228368 DOI: 10.1309/ajcppi5klinekh7a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Butyrylcholinesterase (BChE) metabolizes the paralytic succinylcholine. Extended paralysis occurs in people with inherited BChE variants that may be identified by measuring BChE activity with and without the inhibitor dibucaine to calculate a dibucaine number (DN). Accurate phenotyping requires phenotype-specific BChE and DN reference intervals. We investigated the concordance between the biochemical BChE phenotype and the BCHE genotype to establish interpretive criteria for biochemical results. DNA was extracted from 45 serum specimens for which BChE activity and DN had been determined. The BCHE gene coding region was amplified and sequenced. Phenotype-genotype concordance and discordance occurred in 16 (36%) and 15 (33%) of specimens, respectively. A phenotype could not be assigned for 14 specimens (31%). An incorrectly assigned phenotype did not change the risk of prolonged paralysis or implied a slightly increased risk when there was none. Accurate BChE phenotyping is difficult using only enzyme activity and DN. The combination of biochemistry and BCHE genotype could improve the assessment of patient risk.
Collapse
Affiliation(s)
- M. Laura Parnas
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| | - Melinda Procter
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City
| | - Monica A. Schwarz
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City
| | - Rong Mao
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City
| | - David G. Grenache
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City
| |
Collapse
|