1
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
2
|
Kimani BG, Kerekes EB, Szebenyi C, Krisch J, Vágvölgyi C, Papp T, Takó M. In Vitro Activity of Selected Phenolic Compounds against Planktonic and Biofilm Cells of Food-Contaminating Yeasts. Foods 2021; 10:1652. [PMID: 34359522 PMCID: PMC8307438 DOI: 10.3390/foods10071652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Phenolic compounds are natural substances that can be obtained from plants. Many of them are potent growth inhibitors of foodborne pathogenic microorganisms, however, phenolic activities against spoilage yeasts are rarely studied. In this study, planktonic and biofilm growth, and the adhesion capacity of Pichia anomala, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Debaryomyces hansenii spoilage yeasts were investigated in the presence of hydroxybenzoic acid, hydroxycinnamic acid, stilbene, flavonoid and phenolic aldehyde compounds. The results showed significant anti-yeast properties for many phenolics. Among the tested molecules, cinnamic acid and vanillin exhibited the highest antimicrobial activity with minimum inhibitory concentration (MIC) values from 500 µg/mL to 2 mg/mL. Quercetin, (-)-epicatechin, resveratrol, 4-hydroxybenzaldehyde, p-coumaric acid and ferulic acid were also efficient growth inhibitors for certain yeasts with a MIC of 2 mg/mL. The D. hansenii, P. anomala and S. pombe biofilms were the most sensitive to the phenolics, while the S. cerevisiae biofilm was quite resistant against the activity of the compounds. Fluorescence microscopy revealed disrupted biofilm matrix on glass surfaces in the presence of certain phenolics. Highest antiadhesion activity was registered for cinnamic acid with inhibition effects between 48% and 91%. The active phenolics can be natural interventions against food-contaminating yeasts in future preservative developments.
Collapse
Affiliation(s)
- Bernard Gitura Kimani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| | - Erika Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| | - Csilla Szebenyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Judit Krisch
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, H-6724 Szeged, Hungary;
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| |
Collapse
|
3
|
Escherichia coli FabG 3-ketoacyl-ACP reductase proteins lacking the assigned catalytic triad residues are active enzymes. J Biol Chem 2021; 296:100365. [PMID: 33545175 PMCID: PMC7973133 DOI: 10.1016/j.jbc.2021.100365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/01/2022] Open
Abstract
The FabG 3-ketoacyl-acyl carrier protein (ACP) reductase of Escherichia coli has long been thought to be a classical member of the short-chain alcohol dehydrogenase/reductase (SDR) family. FabG catalyzes the essential 3-ketoacyl-ACP reduction step in the FAS II fatty acid synthesis pathway. Site-directed mutagenesis studies of several other SDR enzymes has identified three highly conserved amino acid residues, Ser, Tyr, and Lys, as the catalytic triad. Structural analyses of E. coli FabG suggested the triad S138-Y151-K155 to form a catalytically competent active site. To test this hypothesis, we constructed a series of E. coli FabG mutants and tested their 3-ketoacyl-ACP reductase activities both in vivo and in vitro. Our data show that plasmid-borne FabG mutants, including the double and triple mutants, restored growth of E. coli and Salmonella enterica fabG temperature-sensitive mutant strains under nonpermissive conditions. In vitro assays demonstrated that all of the purified FabG mutant proteins maintained fatty acid synthetic ability, although the activities of the single mutant proteins were 20% to 50% lower than that of wildtype FabG. The S138A, Y151F, and K155A residue substitutions were confirmed by tandem mass spectral sequencing of peptides that spanned all three residues. We conclude that FabG is not a classical short-chain alcohol dehydrogenase/reductase, suggesting that an alternative mode of 3-ketoacyl-ACP reduction awaits discovery.
Collapse
|
4
|
Trevisan DAC, da Silva PV, Farias ABP, Campanerut-Sá PAZ, Ribeiro TDVR, Faria DR, de Mendonça PSB, de Mello JCP, Seixas FAV, Mikcha JMG. Antibacterial activity of Barbatimão (Stryphnodendron adstringens) against Staphylococcus aureus: in vitro and in silico studies. Lett Appl Microbiol 2020; 71:259-271. [PMID: 32412089 DOI: 10.1111/lam.13317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/23/2022]
Abstract
We evaluated the activity of the aqueous fraction and the ethyl acetate fraction of Stryphnodendron adstringens against Staphylococcus aureus and proposed their mechanism of action. The antibacterial activity of S. adstringens fractions was evaluated against S. aureus and the cell targets were rated by docking. The fractions showed moderate antibacterial activity against S. aureus without toxicity on two mammalian cell lines. They also showed synergistic antibacterial activity with tannic acid (TA). In silico assays indicated FabG, FabZ and FabI as probable targets. The metabolic pathway for fatty acid biosynthesis in S. aureus was affected by components of S. adstringens. The synergistic effect when combining TA with S. adstringens fractions suggests a natural alternative to S. aureus control. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study describing the possible targets of action of Stryphnodendron adstringens on Staphylococcus aureus. Molecular dynamics simulations showed that the components of S. adstringens affected the metabolic pathway for fatty acid biosynthesis (FAS II) in S. aureus, inhibiting the FabI, FabG and FabZ enzymes. As tannic acid (TA) is a known inhibitor of some targets identified, we showed synergistic antibacterial activity of S. adstringens in combination with TA. This combination did not show toxicity against HaCaT and Vero cells and based on all these results we suggest that S. adstringens can be a natural and sustainable alternative to S. aureus control.
Collapse
Affiliation(s)
- D A C Trevisan
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - P V da Silva
- Department of Technology, State University of Maringá, Maringá, Umuarama, PR, Brazil
| | - A B P Farias
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - P A Z Campanerut-Sá
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - T D V R Ribeiro
- Department of Pharmacy, State University of Maringá, Maringá, PR, Brazil
| | - D R Faria
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - P S B de Mendonça
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - J C P de Mello
- Department of Pharmacy, State University of Maringá, Maringá, PR, Brazil
| | - F A V Seixas
- Department of Technology, State University of Maringá, Maringá, Umuarama, PR, Brazil
| | - J M G Mikcha
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| |
Collapse
|
5
|
Neelam, Khatkar A, Sharma KK. Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit Rev Food Sci Nutr 2019; 60:2655-2675. [PMID: 31456411 DOI: 10.1080/10408398.2019.1653822] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phenylpropanoids and their derivatives are plant secondary metabolites widely present in fruits, vegetables, cereal grains, beverages, spices and herbs. They are known to have multifaceted effects which include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer activities and as well as exhibits renoprotective, neuroprotective, cardioprotective and hepatoprotective effects. Owing to their antioxidant, antimicrobial and photoprotective properties, these compounds have wide application in the food (preservation, packaging films and edible coating), pharmaceutical, cosmetic and other industries such as textile (colorant), biofuel (antioxidant additive) and sensors (sensing biologically relevant molecules). Phenylpropanoids are present in commercially available dietary supplements and skin care products. In this review, we have presented the current knowledge on the biosynthesis, occurrence, biological activities of phenylpropanoids and their derivatives, along with the mechanism of action and their potential applications in various industries.
Collapse
Affiliation(s)
- Neelam
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anurag Khatkar
- Department of Pharmaceutical sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
6
|
Shanbhag AP. FabG: from a core to circumstantial catalyst. Biotechnol Lett 2019; 41:675-688. [PMID: 31037463 DOI: 10.1007/s10529-019-02678-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022]
Abstract
Core biochemical pathways such as Fatty-acid synthesis II (FAS II) is ascribed to the synthesis of fatty-acids, biotin and lipoic acid in prokaryotes. It has two dehydrogenases namely, FabG and FabI which interact with the fatty-acid chain bound to Acyl-carrier protein (ACP), a well-studied enzyme which binds to substrates of varying lengths. This protein-protein interaction 'broadens' the active site of these dehydrogenases thus, contributing to their flexible nature. This property is exploited for catalysing numerous chiral synthons, alkanes, long-chain alcohols and secondary metabolites in industries especially with FabG. FASI relegates FASII in eukaryotes making it a 'relic gene pool' and an antibacterial drug target with diverse inhibitor and substrate markush. FabG often substitutes other dehydrogenases for producing secondary metabolites in nature. This redundancy is probably due to gene duplication or addition events possibly making FabG, a progenitor to some of the complex short-chain dehydrogenases used in organisms and industries today.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India. .,Bugworks Research India Pvt. Ltd, C-CAMP, NCBS Campus, UAS-GKVK, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
7
|
Cloning of the pks3 gene of Aurantiochytrium limacinum and functional study of the 3-ketoacyl-ACP reductase and dehydratase enzyme domains. PLoS One 2018; 13:e0208853. [PMID: 30533058 PMCID: PMC6289434 DOI: 10.1371/journal.pone.0208853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022] Open
Abstract
Aurantiochytrium limacinum has received attention because of its abundance of polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA). DHA is synthesized through the polyketide synthase (PKS) pathway in A. limacinum. The related enzymes of the PKS pathway are mainly expressed by three gene clusters, called pks1, pks2 and pks3. In this study, the full-length pks3 gene was obtained by polymerase chain reaction amplification and Genome Walking technology. Based on a domain analysis of the deduced amino acid sequence of the pks3 gene, 3-ketoacyl-ACP reductase (KR) and dehydratase (DH) enzyme domains were identified. Herein, A. limacinum OUC168 was engineered by gene knock-in of KR and DH using the 18S rDNA sequence as the homologous recombination site. Total fatty acid contents and the degree of unsaturation of total fatty acids increased after the kr or dh gene was knocked in. The cloning and functional study of the pks3 gene of A. limacinum establishes a foundation for revealing the DHA synthetic pathway. Gene knock-in of the enzyme domain associated with PKS synthesis has the potential to provide effective recombinant strains with higher DHA content for industrial applications.
Collapse
|
8
|
Liu C, Qi J, Shan B, Ma Y. Tachyplesin Causes Membrane Instability That Kills Multidrug-Resistant Bacteria by Inhibiting the 3-Ketoacyl Carrier Protein Reductase FabG. Front Microbiol 2018; 9:825. [PMID: 29765362 PMCID: PMC5938390 DOI: 10.3389/fmicb.2018.00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Tachyplesin is a type of cationic β-hairpin antimicrobial peptide discovered in horseshoe crab approximately 30 years ago that is well known for both its potential antimicrobial activities against multidrug-resistant bacteria and its cytotoxicity to mammalian cells. Though its physical interactions with artificial membranes have been well studied, details of its physiological mechanism of action the physiological consequences of its action remain limited. By using the DNA-binding fluorescent dye propidium iodide to monitor membrane integrity, confocal microscopy to assess the intracellular location of FITC-tagged tachyplesin, and RNA sequencing of the differentially expressed genes in four Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) treated with lethal or sublethal concentrations of tachyplesin, we found that compared with levofloxacin-treated bacteria, tachyplesin-treated bacteria showed significant effects on the pathways underlying unsaturated fatty acid biosynthesis. Notably, RNA levels of the conserved and essential 3-ketoacyl carrier protein reductase in this pathway (gene FabG) were elevated in all of the four bacteria after tachyplesin treatment. In vitro tests including surface plasmon resonance and enzyme activity assays showed that tachyplesin could bind and inhibit 3-ketoacyl carrier protein reductase, which was consistent with molecular docking prediction results. As unsaturated fatty acids are important for membrane fluidity, our results provided one possible mechanism to explain how tachyplesin kills bacteria and causes cytotoxicity by targeting membranes, which may be helpful for designing more specific and safer antibiotics based on the function of tachyplesin.
Collapse
Affiliation(s)
- Cunbao Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jialong Qi
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Bin Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
9
|
Korošec B, Sova M, Turk S, Kraševec N, Novak M, Lah L, Stojan J, Podobnik B, Berne S, Zupanec N, Bunc M, Gobec S, Komel R. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J Appl Microbiol 2014; 116:955-66. [PMID: 24314266 DOI: 10.1111/jam.12417] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 11/06/2013] [Accepted: 11/25/2013] [Indexed: 11/27/2022]
Abstract
AIMS CYP53A15, from the sorghum pathogen Cochliobolus lunatus, is involved in detoxification of benzoate, a key intermediate in aromatic compound metabolism in fungi. Because this enzyme is unique to fungi, it is a promising drug target in fungal pathogens of other eukaryotes. METHODS AND RESULTS In our work, we showed high antifungal activity of seven cinnamic acid derivatives against C. lunatus and two other fungi, Aspergillus niger and Pleurotus ostreatus. To elucidate the mechanism of action of cinnamic acid derivatives with the most potent antifungal properties, we studied the interactions between these compounds and the active site of C. lunatus cytochrome P450, CYP53A15. CONCLUSION We demonstrated that cinnamic acid and at least four of the 42 tested derivatives inhibit CYP53A15 enzymatic activity. SIGNIFICANCE AND IMPACT OF THE STUDY By identifying selected derivatives of cinnamic acid as possible antifungal drugs, and CYP53 family enzymes as their targets, we revealed a potential inhibitor-target system for antifungal drug development.
Collapse
Affiliation(s)
- B Korošec
- National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Banerjee DR, Dutta D, Saha B, Bhattacharyya S, Senapati K, Das AK, Basak A. Design, synthesis and characterization of novel inhibitors against mycobacterial β-ketoacyl CoA reductase FabG4. Org Biomol Chem 2014; 12:73-85. [DOI: 10.1039/c3ob41676c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Wei Y, Perez LJ, Ng WL, Semmelhack MF, Bassler BL. Mechanism of Vibrio cholerae autoinducer-1 biosynthesis. ACS Chem Biol 2011; 6:356-65. [PMID: 21197957 PMCID: PMC3077805 DOI: 10.1021/cb1003652] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Vibrio cholerae, the causative agent of the disease cholera, uses a cell to cell communication process called quorum sensing to control biofilm formation and virulence factor production. The major V. cholerae quorum-sensing signal CAI-1 has been identified as (S)-3-hydroxytridecan-4-one, and the CqsA protein is required for CAI-1 production. However, the biosynthetic route to CAI-1 remains unclear. Here we report that (S)-adenosylmethionine (SAM) is one of the two biosynthetic substrates for CqsA. CqsA couples SAM and decanoyl-coenzyme A to produce a previously unknown but potent quorum-sensing molecule, 3-aminotridec-2-en-4-one (Ea-CAI-1). The CqsA mechanism is unique; it combines two enzymatic transformations, a β,γ-elimination of SAM and an acyltransferase reaction into a single PLP-dependent catalytic process. Ea-CAI-1 is subsequently converted to CAI-1, presumably through the intermediate tridecane-3,4-dione (DK-CAI-1). We propose that the Ea-CAI-1 to DK-CAI-1 conversion occurs spontaneously, and we identify the enzyme responsible for the subsequent step: conversion of DK-CAI-1 into CAI-1. SAM is the substrate for the synthesis of at least three different classes of quorum-sensing signal molecules, indicating that bacteria have evolved a strategy to leverage an abundant substrate for multiple signaling purposes.
Collapse
Affiliation(s)
| | | | | | | | - Bonnie L. Bassler
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| |
Collapse
|