1
|
Kandhari K, Kant R, Mishra N, Agarwal C, Agarwal R. Phenylarsine oxide induced corneal injury involves oxidative stress mediated unfolded protein response and ferroptotic cell death: Amelioration by NAC. Free Radic Biol Med 2023; 209:265-281. [PMID: 38088264 PMCID: PMC10719503 DOI: 10.1016/j.freeradbiomed.2023.10.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023]
Abstract
Phenylarsine oxide (PAO), an analog of lewisite, is a highly toxic trivalent arsenical and a potential chemical warfare agent. PAO-induced toxicity has been studied in lung, liver, and skin tissues. Nevertheless, very few studies have been published to comprehend the impact of PAO-induced toxicity on ocular tissues, even though eyes are uniquely vulnerable to injury by vesicants. Notably, arsenical vesicants such as lewisite have been shown to cause edema of eyelids, inflammation, massive corneal necrosis, and blindness. Accordingly, human corneal epithelial cells were used to study the effects of PAO exposure. PAO (100 and 200 nM) induced significant oxidative stress in corneal epithelial cells. Simultaneous treatment with N-acetyl-l-cysteine (NAC), an FDA-approved antioxidant, reversed the PAO-induced toxicity in human corneal epithelial cells. Furthermore, oxidative stress induction by PAO was accompanied by unfolded protein response (UPR) signaling activation and ferroptotic cell death. Further, to validate the findings of our in vitro studies, we optimized injury biomarkers and developed an ex vivo rabbit corneal culture model of PAO exposure. Investigations using PAO in ex vivo rabbit corneas revealed similar results. PAO (5 or 10 μg) for 3, 5, and 10 min caused moderate to extensive corneal epithelial layer degradation and reduced the epithelial layer thickness in a concentration- and time-dependent manner. Similar to human corneal cells, injuries by PAO in ex vivo cultured rabbit corneas were also associated with elevated oxidative stress, UPR signaling, and ferroptosis induction. NAC mitigated PAO-induced corneal injuries in rabbit ex vivo cornea culture as well. The reversal of PAO toxicity upon NAC treatment observed in our studies could be attributed to its antioxidant properties. These findings suggest that PAO exposure can cause significant corneal injury and highlight the need for further mechanistic studies to better understand the pathobiology of different arsenical vesicants, including PAO and lewisite.
Collapse
Affiliation(s)
- Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Huang P, Zhang YH, Zheng XW, Liu YJ, Zhang H, Fang L, Zhang YW, Yang C, Islam K, Wang C, Naranmandura H. Phenylarsine oxide (PAO) induces apoptosis in HepG2 cells via ROS-mediated mitochondria and ER-stress dependent signaling pathways. Metallomics 2017; 9:1756-1764. [PMID: 28831476 DOI: 10.1039/c7mt00179g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Arsenic trioxide (As2O3) is an old drug that has recently been reintroduced as a therapeutic agent for acute promyelocytic leukemia (APL). Although As2O3 is also applied to treat other types of cancer in vitro and in vivo, it has been reported that single agent As2O3 has poor efficacy against non-hematologic malignant cancers in clinical trials. Recently, a few reports have indicated that organic arsenic compounds can be a possible alternative for the treatment of As2O3-resistant cancers. In this study, we aimed to investigate whether the organic arsenic compound phenylarsine oxide (PAO) has potent cytotoxic effects against human hepatocellular carcinoma (HCC) HepG2 cells. Our results showed that PAO not only had a potent inhibitory effect on the proliferation of HepG2 cells but also activated apoptosis-related proteins (e.g., caspase-3 and -9 and poly-ADP ribose polymerase) in a dose- and time-dependent manner. Furthermore, intracellular ROS were specifically accumulated in the mitochondria and endoplasmic reticulum (ER) after exposure to PAO, implying that they are the target organelles for PAO-induced cytotoxicity. Additionally, when the cells were pretreated with antioxidant N-acetylcysteine (NAC), apoptosis and ER-stress were attenuated significantly, suggesting that induction of apoptosis and cell death probably occurs through the ROS-mediated mitochondria and ER-stress dependent signaling pathways.
Collapse
Affiliation(s)
- Ping Huang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yu Hua Zhang
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Xiao Wei Zheng
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yu Jia Liu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Hong Zhang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yi Wen Zhang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Chang Yang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, 310058, China and Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, 310058, China.
| | - Khairul Islam
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, 310058, China.
| | - Chao Wang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, 310058, China.
| | - Hua Naranmandura
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, 310058, China and Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Gunnink LK, Busscher BM, Wodarek JA, Rosette KA, Strohbehn LE, Looyenga BD, Louters LL. Caffeine inhibition of GLUT1 is dependent on the activation state of the transporter. Biochimie 2017; 137:99-105. [PMID: 28322926 DOI: 10.1016/j.biochi.2017.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Caffeine has been shown to be a robust uncompetitive inhibitor of glucose uptake in erythrocytes. It preferentially binds to the nucleotide-binding site on GLUT1 in its tetrameric form and mimics the inhibitory action of ATP. Here we demonstrate that caffeine is also a dose-dependent, uncompetitive inhibitor of 2-deoxyglucose (2DG) uptake in L929 fibroblasts. The inhibitory effect on 2DG uptake in these cells was reversible with a rapid onset and was additive to the competitive inhibitory effects of glucose itself, confirming that caffeine does not interfere with glucose binding. We also report for the first time that caffeine inhibition was additive to inhibition by curcumin, suggesting distinct binding sites for curcumin and caffeine. In contrast, caffeine inhibition was not additive to that of cytochalasin B, consistent with previous data that reported that these two inhibitors have overlapping binding sites. More importantly, we show that the magnitude of maximal caffeine inhibition in L929 cells is much lower than in erythrocytes (35% compared to 90%). Two epithelial cell lines, HCLE and HK2, have both higher concentrations of GLUT1 and increased basal 2DG uptake (3-4 fold) compared to L929 cells, and subsequently display greater maximal inhibition by caffeine (66-70%). Interestingly, activation of 2DG uptake (3-fold) in L929 cells by glucose deprivation shifted the responsiveness of these cells to caffeine inhibition (35%-70%) without a change in total GLUT1 concentration. These data indicate that the inhibition of caffeine is dependent on the activity state of GLUT1, not merely on the concentration.
Collapse
Affiliation(s)
- Leesha K Gunnink
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Brianna M Busscher
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Jeremy A Wodarek
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Kylee A Rosette
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Lauren E Strohbehn
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Brendan D Looyenga
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Larry L Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA.
| |
Collapse
|
4
|
Singh N, Wadhawan M, Tiwari S, Kumar R, Rathaur S. Inhibition of Setaria cervi protein tyrosine phosphatases by Phenylarsine oxide: A proteomic and biochemical study. Acta Trop 2016; 159:20-8. [PMID: 26965172 DOI: 10.1016/j.actatropica.2016.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/25/2016] [Accepted: 03/05/2016] [Indexed: 12/23/2022]
Abstract
Phenylarsine oxide (PAO), a specific protein tyrosine phosphatase (PTP) inhibitor significantly decreased the motility and viability of Setaria cervi ultimately leading to its death. The PTP activity present in the cytosolic and detergent soluble fractions as well as on surface of these parasites was significantly inhibited by PAO. A marked alteration in protein spots abundance after proteomic analysis showed 14 down-regulated and 9 upregulated spots in the treated parasites as compared to the control. The PTP inhibition led to increase in the cytosolic and mitochondrial calpain activity in these parasites. PAO also blocked the ATP generation in the parasite depicted by reduced activity of phosphoglycerate kinase and expression of enolase. An increased ROS level, induced lipid peroxidation/protein carbonyl formation and decreased activity of different antioxidant enzymes like thioredoxin reductase, glutathione reductase and glutathione transferases was also observed in the PAO treated parasites. PAO, thus disturbs the overall homeostasis of the filarial parasite by inhibiting PTPs. Thereby suggesting that these molecules could be used as a good chemotherapeutic target for lymphatic filariasis.
Collapse
|
5
|
Looyenga B, VanOpstall C, Lee Z, Bell J, Lodge E, Wrobel K, Arnoys E, Louters L. Determination of GLUT1 Oligomerization Parameters using Bioluminescent Förster Resonance Energy Transfer. Sci Rep 2016; 6:29130. [PMID: 27357903 PMCID: PMC4928127 DOI: 10.1038/srep29130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/15/2016] [Indexed: 12/24/2022] Open
Abstract
The facilitated glucose transporter GLUT1 (SLC2A1) is an important mediator of glucose homeostasis in humans. Though it is found in most cell types to some extent, the level of GLUT1 expression across different cell types can vary dramatically. Prior studies in erythrocytes-which express particularly high levels of GLUT1-have suggested that GLUT1 is able to form tetrameric complexes with enhanced transport activity. Whether dynamic aggregation of GLUT1 also occurs in cell types with more modest expression of GLUT1, however, is unclear. To address this question, we developed a genetically encoded bioluminescent Förster resonance energy transfer (BRET) assay using the luminescent donor Nanoluciferase and fluorescent acceptor mCherry. By tethering these proteins to the N-terminus of GLUT1 and performing saturation BRET analysis, we were able to demonstrate the formation of multimeric complexes in live cells. Parallel use of flow cytometry and immunoblotting further enabled us to estimate the density of GLUT1 proteins required for spontaneous oligomerization. These data provide new insights into the physiological relevance of GLUT1 multimerization as well as a new variant of BRET assay that is useful for measuring the interactions among other cell membrane proteins in live cells.
Collapse
Affiliation(s)
- Brendan Looyenga
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Calvin VanOpstall
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Zion Lee
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Jed Bell
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Evans Lodge
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Katherine Wrobel
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Eric Arnoys
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Larry Louters
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| |
Collapse
|
6
|
Gunnink LK, Alabi OD, Kuiper BD, Gunnink SM, Schuiteman SJ, Strohbehn LE, Hamilton KE, Wrobel KE, Louters LL. Curcumin directly inhibits the transport activity of GLUT1. Biochimie 2016; 125:179-85. [PMID: 27039889 DOI: 10.1016/j.biochi.2016.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/30/2016] [Indexed: 11/17/2022]
Abstract
Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin's inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin.
Collapse
Affiliation(s)
- Leesha K Gunnink
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Ola D Alabi
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Benjamin D Kuiper
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Stephen M Gunnink
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Sam J Schuiteman
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Lauren E Strohbehn
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Kathryn E Hamilton
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Kathryn E Wrobel
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Larry L Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA.
| |
Collapse
|
7
|
Alabi OD, Gunnink SM, Kuiper BD, Kerk SA, Braun E, Louters LL. Osthole activates glucose uptake but blocks full activation in L929 fibroblast cells, and inhibits uptake in HCLE cells. Life Sci 2014; 102:105-10. [PMID: 24657891 DOI: 10.1016/j.lfs.2014.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 12/20/2022]
Abstract
AIMS Osthole, a coumarin derivative, has been used in Chinese medicine and studies have suggested a potential use in treatment of diabetes and cancers. Therefore, we investigated the effects of osthole and other coumarins on GLUT1 activity in two cell lines that exclusively express GLUT1. MAIN METHODS We measured the magnitude and time frame of the effects of osthole and related coumarins on glucose uptake in two cells lines; L929 fibroblast cells which have low GLUT1 expression levels and low basal glucose uptake and HCLE cells which have high GLUT1 concentrations and high basal uptake. We also explored the effects of these coumarins in combination with other GLUT1 activators. KEY FINDINGS Osthole activates glucose uptake in L929 cells with a modest maximum 1.7-fold activation achieved by 50 μM with both activation and recovery occurring within minutes. However, osthole blocks full acute activation of glucose uptake by other, more robust activators. This behavior mimics the effects of other thiol reactive compounds and suggests that osthole is interacting with cysteine residues, possibly within GLUT1 itself. Coumarin, 7-hydroxycoumarin, and 7-methoxycoumarin, do not affect glucose uptake, which is consistent with the notion that the isoprenoid structure in osthole may be important to gain membrane access to GLUT1. In contrast to its effects in L929 cells, osthole inhibits basal glucose uptake in the more active HCLE cells. SIGNIFICANCE The differential effects of osthole in L929 and HCLE cells indicated that regulation of GLUT1 varies, likely depending on its membrane concentration.
Collapse
Affiliation(s)
- Ola D Alabi
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Stephen M Gunnink
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Benjamin D Kuiper
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Samuel A Kerk
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Emily Braun
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Larry L Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA.
| |
Collapse
|
8
|
Gunnink SM, Kerk SA, Kuiper BD, Alabi OD, Kuipers DP, Praamsma RC, Wrobel KE, Louters LL. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells. Biochimie 2013; 99:189-94. [PMID: 24333987 DOI: 10.1016/j.biochi.2013.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry.
Collapse
Affiliation(s)
- Stephen M Gunnink
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Samuel A Kerk
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Benjamin D Kuiper
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Ola D Alabi
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - David P Kuipers
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Riemer C Praamsma
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Kathryn E Wrobel
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Larry L Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA.
| |
Collapse
|
9
|
Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, Silbergeld EK, Styblo M, Tseng CH, Thayer KA, Loomis D. Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1658-70. [PMID: 22889723 PMCID: PMC3548281 DOI: 10.1289/ehp.1104579] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 08/10/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Diabetes affects an estimated 346 million persons globally, and total deaths from diabetes are projected to increase > 50% in the next decade. Understanding the role of environmental chemicals in the development or progression of diabetes is an emerging issue in environmental health. In 2011, the National Toxicology Program (NTP) organized a workshop to assess the literature for evidence of associations between certain chemicals, including inorganic arsenic, and diabetes and/or obesity to help develop a focused research agenda. This review is derived from discussions at that workshop. OBJECTIVES Our objectives were to assess the consistency, strength/weaknesses, and biological plausibility of findings in the scientific literature regarding arsenic and diabetes and to identify data gaps and areas for future evaluation or research. The extent of the existing literature was insufficient to consider obesity as an outcome. DATA SOURCES, EXTRACTION, AND SYNTHESIS Studies related to arsenic and diabetes or obesity were identified through PubMed and supplemented with relevant studies identified by reviewing the reference lists in the primary literature or review articles. CONCLUSIONS Existing human data provide limited to sufficient support for an association between arsenic and diabetes in populations with relatively high exposure levels (≥ 150 µg arsenic/L in drinking water). The evidence is insufficient to conclude that arsenic is associated with diabetes in lower exposure (< 150 µg arsenic/L drinking water), although recent studies with better measures of outcome and exposure support an association. The animal literature as a whole was inconclusive; however, studies using better measures of diabetes-relevant end points support a link between arsenic and diabetes.
Collapse
Affiliation(s)
- Elizabeth A Maull
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Louters LL, Scripture JP, Kuipers DP, Gunnink SM, Kuiper BD, Alabi OD. Hydroxylamine acutely activates glucose uptake in L929 fibroblast cells. Biochimie 2012. [PMID: 23201556 DOI: 10.1016/j.biochi.2012.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nitroxyl (HNO) has a unique, but varied, set of biological properties including beneficial effects on cardiac contractility and stimulation of glucose uptake by GLUT1. These biological effects are largely initiated by HNO's reaction with cysteine residues of key proteins. The intracellular production of HNO has not yet been demonstrated, but the small molecule, hydroxylamine (HA), has been suggested as possible intracellular source. We examined the effects of this molecule on glucose uptake in L929 fibroblast cells. HA activates glucose uptake from 2 to 5-fold within two minutes. Prior treatment with thiol-active compounds, such as iodoacetamide (IA), cinnamaldehyde (CA), or phenylarsine oxide (PAO) blocks HA-activation of glucose uptake. Incubation of HA with the peroxidase inhibitor, sodium azide, also blocks the stimulatory effects of HA. This suggests that HA is oxidized to HNO by L929 fibroblast cells, which then reacts with cysteine residues to exert its stimulatory effects. The data suggest that GLUT1 is acutely activated in L929 cells by modification of cysteine residues, possibly the formation of a disulfide bond within GLUT1 itself.
Collapse
Affiliation(s)
- Larry L Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Differential regulation of GLUT1 activity in human corneal limbal epithelial cells and fibroblasts. Biochimie 2012; 95:258-63. [PMID: 23009931 DOI: 10.1016/j.biochi.2012.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022]
Abstract
The corneal epithelial tissue is a layer of rapidly growing cells that are highly glycolytic and express GLUT1 as the major glucose transporter. It has been shown that GLUT1 in L929 fibroblast cells and other cell lines can be acutely activated by a variety agents. However, the acute regulation of glucose uptake in corneal cells has not been systematically investigated. Therefore, we examined glucose uptake in an immortalized human corneal-limbal epithelial (HCLE) cell line and compared it to glucose uptake in L929 fibroblast cells, a cell line where glucose uptake has been well characterized. We report that the expression of GLUT1 in HCLE cells is 6.6-fold higher than in L929 fibroblast cells, but the HCLE cells have a 25-fold higher basal rate of glucose uptake. Treatment with agents that interfere with mitochondrial metabolism, such as sodium azide and berberine, activate glucose uptake in L929 cells over 3-fold, but have no effect on glucose uptake HCLE cells. Also, agents known to react with thiols, such cinnamaldehyde, phenylarsine oxide and nitroxyl stimulate glucose uptake in L929 cells 3-4-fold, but actually inhibit glucose uptake in HCLE cells. These data suggest that in the fast growing HCLE cells, GLUT1 is expressed at a higher concentration and is already highly activated at basal conditions. These data support a model for the acute activation of GLUT1 that suggests that the activity of GLUT1 is enhanced by the formation of an internal disulfide bond within GLUT1 itself.
Collapse
|
12
|
Salie MJ, Oram DS, Kuipers DP, Scripture JP, Chenge J, MacDonald GJ, Louters LL. Nitroxyl (HNO) acutely activates the glucose uptake activity of GLUT1. Biochimie 2011; 94:864-9. [PMID: 22182490 DOI: 10.1016/j.biochi.2011.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
Nitroxyl (HNO) is a molecule of significant interest due to its unique pharmacological properties, particularly within the cardiovascular system. A large portion of HNO biological effects can be attributed to its reactivity with protein thiols, where it can generate disulfide bonds. Evidence from studies in erythrocytes suggests that the activity of GLUT1 is enhanced by the formation of an internal disulfide bond. However, there are no reports that document the effects of HNO on glucose uptake. Therefore, we examined the acute effects of Angeli's salt (AS), a HNO donor, on glucose uptake activity of GLUT1 in L929 fibroblast cells. We report that AS stimulates glucose uptake with a maximum effective concentration of 5.0 mM. An initial 7.2-fold increase occurs within 2 min, which decreases and plateaus to a 4.0-fold activation after 10 min. About 60% of the 4.0-fold activation recovers within 10 min, and 40% remains after an hour. The activation is blocked by the pretreatment of cells with thiol-reactive compounds, iodoacetamide (0.75 mM), cinnamaldehyde (2.0 mM), and phenylarsine oxide (10 μM). The effects of AS are not additive to the stimulatory effects of other acute activators of glucose uptake in L929 cells, such as azide (5 mM), berberine (50 μM), or glucose deprivation. These data suggest that GLUT1 is acutely activated in L929 cells by the formation of a disulfide bond, likely within GLUT1 itself.
Collapse
Affiliation(s)
- Matthew J Salie
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Huang CF, Chen YW, Yang CY, Tsai KS, Yang RS, Liu SH. Arsenic and diabetes: current perspectives. Kaohsiung J Med Sci 2011; 27:402-10. [PMID: 21914528 DOI: 10.1016/j.kjms.2011.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/24/2011] [Indexed: 01/19/2023] Open
Abstract
Arsenic is a naturally occurring toxic metalloid of global concern. Many studies have indicated a dose-response relationship between accumulative arsenic exposure and the prevalence of diabetes mellitus (DM) in arseniasis-endemic areas in Taiwan and Bangladesh, where arsenic exposure occurs through drinking water. Epidemiological researches have suggested that the characteristics of arsenic-induced DM observed in arseniasis-endemic areas in Taiwan and Mexico are similar to those of non-insulin-dependent DM (Type 2 DM). These studies analyzed the association between high and chronic exposure to inorganic arsenic in drinking water and the development of DM, but the effect of exposure to low to moderate levels of inorganic arsenic on the risk of DM is unclear. Navas-Acien et al. recently proposed that a positive association existed between total urine arsenic and the prevalence of Type 2 DM in people exposed to low to moderate levels of arsenic. However, the diabetogenic role played by arsenic is still debated upon. An increase in the prevalence of DM has been observed among residents of highly arsenic-contaminated areas, whereas the findings from community-based and occupational studies in low-arsenic-exposure areas have been inconsistent. Recently, a population-based cross-sectional study showed that the current findings did not support an association between arsenic exposure from drinking water at levels less than 300 μg/L and a significantly increased risk of DM. Moreover, although the precise mechanisms for the arsenic-induced diabetogenic effect are still largely undefined, recent in vitro experimental studies indicated that inorganic arsenic or its metabolites impair insulin-dependent glucose uptake or glucose-stimulated insulin secretion. Nevertheless, the dose, the form of arsenic used, and the experimental duration in the in vivo studies varied greatly, leading to conflicting results and ambiguous interpretation of these data with respect to human exposure to arsenic in the environment. Moreover, the experimental studies were limited to the use of arsenic concentrations much higher than those relevant to human exposure. Further prospective epidemiological studies might help to clarify this controversy. The issues about environmental exposure assessment and appropriate biomarkers should also be considered. Here, we focus on the review of mechanism studies and discuss the currently available evidence and conditions for the association between environmental arsenic exposure and the development of DM.
Collapse
Affiliation(s)
- Chun Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Plaisier C, Cok A, Scott J, Opejin A, Bushhouse KT, Sallie M, Louters LL. Effects of cinnamaldehyde on the glucose transport activity of GLUT1. Biochimie 2011; 93:339-44. [PMID: 20955755 PMCID: PMC3019305 DOI: 10.1016/j.biochi.2010.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023]
Abstract
There is accumulating evidence that cinnamon extracts contain components that enhance insulin action. However, little is know about the effects of cinnamon on non-insulin stimulated glucose uptake. Therefore, the effects of cinnamaldehyde on the glucose transport activity of GLUT1 in L929 fibroblast cells were examined under both basal conditions and conditions where glucose uptake is activated by glucose deprivation. The data reveal that cinnamaldehyde has a dual action on the glucose transport activity of GLUT1. Under basal conditions it stimulates glucose uptake and reaches a 3.5 fold maximum stimulation at 2.0mM. However, cinnamaldehyde also inhibits the activation of glucose uptake by glucose deprivation in a dose dependent manner. Experiments with cinnamaldehyde analogs reveal that these activities are dependent on the α,β-unsaturated aldehyde structural motif in cinnamaldehyde. The inhibitory, but not the stimulatory activity of cinnamaldehyde was maintained after a wash-recovery period. Pretreatment of cinnamaldehyde with thiol-containing compounds, such as β-mercaptoethanol or cysteine, blocked the inhibitory activity of cinnamaldehyde. These results suggest that cinnamaldehyde inhibits the activation of GLUT1 by forming a covalent link to target cysteine residue/s. This dual activity of cinnamaldehyde on the transport activity of GLUT1 suggests that cinnamaldehyde is not a major contributor to the anti-diabetic properties of cinnamon.
Collapse
Affiliation(s)
- Christina Plaisier
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, USA 49546
| | - Alexandra Cok
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, USA 49546
| | - Jordan Scott
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, USA 49546
| | - Adeleye Opejin
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, USA 49546
| | - Kelsey T. Bushhouse
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, USA 49546
| | - Mathew Sallie
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, USA 49546
| | - Larry L. Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, USA 49546
| |
Collapse
|