1
|
Wang M, Cheng L, Xiang Q, Gao Z, Ding Y, Xie H, Chen X, Yu P, Shen L. Evaluation the role of cuproptosis-related genes in the pathogenesis, diagnosis and molecular subtypes identification of atherosclerosis. Heliyon 2023; 9:e21158. [PMID: 37928399 PMCID: PMC10622704 DOI: 10.1016/j.heliyon.2023.e21158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Background At present, the pathogenesis of atherosclerosis has not been fully elucidated, and the diagnosis and treatment face great challenges. Cuproptosis is a novel cell death pattern that might be involved in the development of atherosclerosis. However, no research has reported the correlation between cuproptosis and atherosclerosis. Methods The differential cuproptosis-related genes (CRGs) between atherosclerosis group and control group (A-CRGs) were discovered via differential expression analysis. The correlation analysis, PPI network analysis, GO, KEGG and GSEA analysis were performed to investigate the function of A-CRGs. The differences of biological function between atherosclerosis group and control group were investigated via immune infiltration analysis and GSVA. The LASSO regression, nomogram and machine learning models were constructed to predict atherosclerosis risk. The atherosclerosis molecular subtypes clusters were discovered via unsupervised cluster analysis. Subsequently, we used the above research methods to analyze the differential CRGs between clusters (M-CRGs) and evaluate the molecular subtypes identification performance of M-CRGs. Finally, we verified the diagnostic value for atherosclerosis and role in cuproptosis of these CRGs through the validation set and in vitro experiments. Results Five A-CRGs were identified and they were mainly related to the biological function of copper ion metabolism and immune inflammatory response. The diagnostic models and nomogram of atherosclerosis based on 5 A-CRGs indicated that these genes had well diagnostic value. A total of two molecular subtypes clusters were obtained in the atherosclerosis group. There were many differences in biological functions between these two molecular subtypes clusters, such as mitochondrial outer membrane permeabilization and primary immunodeficiency. In addition, 3 M-CRGs were identified in the 2 clusters. Machine learning models and nomogram constructed based on M-CRGs showed that these genes had well molecular subtypes identification efficacy. In the end, the results of in vitro experiment and validation set confirmed the diagnostic value for atherosclerosis and role in cuproptosis of these genes. Conclusion The cuproptosis may be a potential pathogenesis of atherosclerosis and CRGs may be promising markers for the diagnosis and molecular subtypes identification of atherosclerosis.
Collapse
Affiliation(s)
- Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liying Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Gao
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haitao Xie
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Le Shen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
2
|
Zhang S, Zhang L, Lu H, Yao Y, Liu X, Hou J. A cuproptosis and copper metabolism–related gene prognostic index for head and neck squamous cell carcinoma. Front Oncol 2022; 12:955336. [PMID: 36072790 PMCID: PMC9441563 DOI: 10.3389/fonc.2022.955336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe purpose of this study was to identify the prognostic value of cuproptosis and copper metabolism–related genes, to clarify their molecular and immunological characteristics, and to elucidate their benefits in head and neck squamous cell carcinoma (HNSCC).MethodsThe details of human cuproptosis and copper metabolism–related genes were searched and filtered from the msigdb database and the latest literature. To identify prognostic genes associated with cuproptosis and copper metabolism, we used least absolute shrinkage and selection operator regression, and this coefficient was used to set up a prognostic risk score model. HNSCC samples were divided into two groups according to the median risk. Afterwards, the function and immune characteristics of these genes in HNSCC were analyzed.ResultsThe 14-gene signature was constructed to classify HNSCC patients into low-risk and high-risk groups according to the risk level. In the The Cancer Genome Atlas (TCGA) cohort, the overall survival (OS) rate of the high-risk group was lower than that of the low-risk group (P < 0.0001). The area under the curve of the time-dependent Receiver Operator Characteristic (ROC) curve assessed the good performance of the genetic signature in predicting OS and showed similar performance in the external validation cohort. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment assays and Protein-Protein Interaction (PPI) protein networks have been used to explore signaling pathways and potential mechanisms that were markedly active in patients with HNSCC. Furthermore, the 14 cuproptosis and copper metabolism-related genes were significantly correlated with the immune microenvironment, suggesting that these genes may be linked with the immune regulation and development of HNSCC.ConclusionsOur results emphasize the significance of cuproptosis and copper metabolism as a predictive biomarker for HNSCC, and its expression levels seem to be correlated with immune- related features; thus, they may be a possible biomarker for HNSCC prognosis.
Collapse
Affiliation(s)
- Shuaiyuan Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lujin Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Huanzi Lu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yihuan Yao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyong Liu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jingsong Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jingsong Hou,
| |
Collapse
|
3
|
de Lima AO, Afonso J, Edson J, Marcellin E, Palfreyman R, Porto-Neto LR, Reverter A, Fortes MRS. Network Analyses Predict Small RNAs That Might Modulate Gene Expression in the Testis and Epididymis of Bos indicus Bulls. Front Genet 2021; 12:610116. [PMID: 33995471 PMCID: PMC8120238 DOI: 10.3389/fgene.2021.610116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Spermatogenesis relies on complex molecular mechanisms, essential for the genesis and differentiation of the male gamete. Germ cell differentiation starts at the testicular parenchyma and finishes in the epididymis, which has three main regions: head, body, and tail. RNA-sequencing data of the testicular parenchyma (TP), head epididymis (HE), and tail epididymis (TE) from four bulls (three biopsies per bull: 12 samples) were subjected to differential expression analyses, functional enrichment analyses, and co-expression analyses. The aim was to investigate the co-expression and infer possible regulatory roles for transcripts involved in the spermatogenesis of Bos indicus bulls. Across the three pairwise comparisons, 3,826 differentially expressed (DE) transcripts were identified, of which 384 are small RNAs. Functional enrichment analysis pointed to gene ontology (GO) terms related to ion channel activity, detoxification of copper, neuroactive receptors, and spermatogenesis. Using the regulatory impact factor (RIF) algorithm, we detected 70 DE small RNAs likely to regulate the DE transcripts considering all pairwise comparisons among tissues. The pattern of small RNA co-expression suggested that these elements are involved in spermatogenesis regulation. The 3,826 DE transcripts (mRNAs and small RNAs) were further subjected to co-expression analyses using the partial correlation and information theory (PCIT) algorithm for network prediction. Significant correlations underpinned the co-expression network, which had 2,216 transcripts connected by 158,807 predicted interactions. The larger network cluster was enriched for male gamete generation and had 15 miRNAs with significant RIF. The miRNA bta-mir-2886 showed the highest number of connections (601) and was predicted to down-regulate ELOVL3, FEZF2, and HOXA13 (negative co-expression correlations and confirmed with TargetScan). In short, we suggest that bta-mir-2886 and other small RNAs might modulate gene expression in the testis and epididymis, in Bos indicus cattle.
Collapse
Affiliation(s)
- Andressa O de Lima
- Department of Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Juliana Afonso
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Janette Edson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia
| | - Robin Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia
| | - Laercio R Porto-Neto
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Antonio Reverter
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
4
|
Abstract
The contentious debate between homeopathy and orthodox medicine has been due to the fact that homeopathy is founded on a heuristic philosophy that is not justified by contemporary scientific evidence. In this context, however, two pillars of the method, that is, serial dilution and succussion, are poorly understood in orthodox pharmacology. The experimental data collected in the last 10 years, by means of electronic microscopy, electron diffraction and DNA arrays investigations, are consistent with the presence of nanoparticles (nanoassociates) in homeopathic medicines and seem to provide a coherent view of the essence of the homeopathy discipline, superseding all previous speculative interpretations. An acceptance of this new evidence is here suggested to remove, in principle, the barrier that separates the conventional and homeopathic therapeutic methods, and to offer new and important perspectives on future health care.
Collapse
Affiliation(s)
- Andrea Dei
- Department of Chemistry, UdR INSTM, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Bellavite P, Marzotto M, Bonafini C. Arnica montana experimental studies: confounders and biases? JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018. [PMID: 29526239 DOI: 10.1016/j.joim.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arnica montana is a popular traditional remedy widely used in complementary and alternative medicine, in part for its wound-healing properties. The authors recently showed that this plant extract and several of its homeopathic dilutions are able to modify the expression of a series of genes involved in inflammation and connective tissue regeneration. Their studies opened a debate, including criticisms to the "errors" in the methods used and the "confounders and biases". Here the authors show that the criticisms raised on methodology and statistics are not consistent and cannot be considered pertinent. The present comment also updates and reviews information concerning the action of A. montana dilutions in human macrophage cells while summarizing the major experimental advances reported on this interesting medicinal plant.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Marta Marzotto
- Department of Medicine, University of Verona, Strada Le Grazie 8, Verona 37134, Italy.
| | - Clara Bonafini
- Department of Medicine, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| |
Collapse
|
6
|
Dei A. Hormesis and Homeopathy: Toward a New Self-Consciousness. Dose Response 2017; 15:1559325817744451. [PMID: 29225559 PMCID: PMC5714091 DOI: 10.1177/1559325817744451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Andrea Dei
- Department of Chemistry, INSTM Research Unit, University of Florence, Florence, Italy
| |
Collapse
|
7
|
Krizkova S, Kepinska M, Emri G, Eckschlager T, Stiborova M, Pokorna P, Heger Z, Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther 2017; 183:90-117. [PMID: 28987322 DOI: 10.1016/j.pharmthera.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous throughout all kingdoms. The main function of MTs is scavenging of free radicals and detoxification and homeostating of heavy metals. In humans, 16 genes localized on chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1-MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M and -1X. The rest of the MT-1 genes (MT-1C, -1D, -1I, -1J and -1L) are pseudogenes. The expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-cellular level and in individual tissues. Changes in MT expression are associated with the process of carcinogenesis of various types of human malignancies, or with a more aggressive phenotype and therapeutic resistance. Hence, MT (sub)isoform profiling status could be utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.
Collapse
Affiliation(s)
- Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Petra Pokorna
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
8
|
Safety evaluations and lipid-lowering activity of an Arthrospira platensis enriched diet: A 1-month study in rats. Food Res Int 2017; 102:380-386. [PMID: 29195962 DOI: 10.1016/j.foodres.2017.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
Arthrospira platensis (A. platensis) is worldwide consumed as dietary supplement, but its use in the form of whole biomass for food purposes may raise toxicity concerns. The aim of this study was to preliminarily evaluate the safety of an A. platensis F&M-C256-enriched diet (20% (weight/weight) corresponding to 12g/kg body weight/day), administered to rats for 1month. A. platensis F&M-C256-enriched diet was well tolerated: behavior, body weight, food consumption and growth curves were not affected; no discomfort, no deaths and no physical signs related to the treatment were observed during the administration period; food daily consumption and apparent digestibility were comparable to those of the standard laboratory AIN-76 control diet. Daily water consumption and urine excretion were, on the contrary, significantly higher (27.18±1.24 vs 21.53±1.68ml and 12.63±0.99 vs 7.00±1.29ml respectively), probably because of a slight increase in sodium intake in rats fed A. platensis F&M-C256-enriched diet. Biochemical markers of kidney and liver function were not varied but a significant increase in cholesterol-HDL and a decreased plasma triglycerides level was observed in rats fed A. platensis F&M-C256-enriched diet. These last changes were associated with an increased fecal lipids excretion and liver PPAR-α gene expression. These results indicate that A. platensis F&M-C256 is likely safe and well tolerated even at a high dosage in rodents and suggest that it may represent a promising functional food for preventing or even for managing dyslipidemias.
Collapse
|
9
|
Olsen S. Effects of ultra-high dilutions of sodium butyrate on viability and gene expression in HEK 293 cells. HOMEOPATHY 2017; 106:32-36. [PMID: 28325222 DOI: 10.1016/j.homp.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/06/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Several recent studies reported the capability of high diluted homeopathic medicines to modulate gene expression in cell cultures. In line with these studies, we examined whether ultra-high dilutions (30C and 200C) of sodium butyrate (SB) can affect the expression levels of genes involved in acquisition of a senescence-associated secretory phenotype (SASP) in human embryonic kidney (HEK) 293 cells. METHODS Cell viability was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The expression levels of TNF-α, interleukin (IL)-2, IL-4, IL-6 and IL-10 genes were determined by real-time PCR assay. RESULTS Exposure to both 30C and 200C during 48 h led to a significant decrease of the level of expression of TNF-α gene, while expression of IL-2 gene was increased when exposed to 30C, and expression of IL-10 gene was decreased when exposed to 200C. No changes in expression levels of all genes studied were observed in cells treated with both 30C and 200C remedies of SB during the 24 h. CONCLUSION Observed changes in gene expression levels after exposure to 30C and 200C remedies of SB during 48 h suggest that extremely low concentrations of this agent can modulate the transcriptome of HEK 293 cells. These results are in line with findings from other studies confirming the ability of homeopathic remedies to modulate gene expression in cell cultures.
Collapse
Affiliation(s)
- Steven Olsen
- Clinical Faculty, Bastyr University, 14500 Juanita Dr NE, Kenmore, WA 98028, USA.
| |
Collapse
|
10
|
Guo X, Zeng L, Wang Z, Zhang T, He C, Duan C. Photocatalytic copper-catalyzed azide–alkyne cycloaddition click reaction with Cu(ii) coordination polymer. RSC Adv 2017. [DOI: 10.1039/c7ra10207k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cu(ii) coordination polymers as photocatalysts for the copper-catalyzed azide–alkyne cycloaddition click reaction under household light irradiation in air.
Collapse
Affiliation(s)
- Xiangyang Guo
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Le Zeng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Zhe Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Tiexin Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| |
Collapse
|
11
|
Olioso D, Marzotto M, Bonafini C, Brizzi M, Bellavite P. Arnica montana effects on gene expression in a human macrophage cell line. Evaluation by quantitative Real-Time PCR. HOMEOPATHY 2016; 105:131-47. [PMID: 27211321 DOI: 10.1016/j.homp.2016.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/01/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Arnica montana is a popular traditional remedy widely used in complementary medicine, also for its wound healing properties. Despite its acknowledged action in clinical settings at various doses, the molecular aspects relating to how A. montana promotes wound healing remain to be elucidated. To fill this gap, we evaluated the whole plant extract, in a wide range of dilutions, in THP-1 human cells, differentiated into mature macrophages and into an alternative IL-4-activated phenotype involved in tissue remodelling and healing. METHODS Real-time quantitative Reverse Transcription Polymerase Chain Reaction (PCR) analysis was used to study the changes in the expression of a customized panel of key genes, mainly cytokines, receptors and transcription factors. RESULTS On macrophages differentiated towards the wound healing phenotype, A. montana affected the expression of several genes. In particular CXC chemokine ligand 1 (CXCL1), coding for an chief chemokine, exhibited the most consistent increase of expression, while also CXC chemokine ligand 2 (CXCL2), Interleukin8 (IL8) and bone morphogenetic protein (BMP2) were slightly up-regulated, suggesting a positive influence of A. montana on neutrophil recruitment and on angiogenesis. MMP1, coding for a metalloproteinase capable of cleaving extracellular matrix substrates, was down-regulated. Most results showed non-linearity of the dose-effect relationship. CONCLUSIONS This exploratory study provides new insights into the cellular and molecular mechanisms of action of A. montana as a promoter of healing, since some of the genes it modifies are key regulators of tissue remodelling, inflammation and chemotaxis.
Collapse
Affiliation(s)
- Debora Olioso
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Marta Marzotto
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Clara Bonafini
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Maurizio Brizzi
- Department of Statistical Sciences, University of Bologna, Via delle Belle Arti 41, 40126 Bologna, Italy
| | - Paolo Bellavite
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
12
|
Bigagli E, Luceri C, Dei A, Bernardini S, Dolara P. Effects of Extreme Dilutions of Apis mellifica Preparations on Gene Expression Profiles of Human Cells. Dose Response 2016; 14:1559325815626685. [PMID: 26788033 PMCID: PMC4710123 DOI: 10.1177/1559325815626685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Gene expression analysis has been employed in the past to test the effects of high dilutions on cell systems. However, most of the previous studies were restricted to the investigation of few dilutions, making it difficult to explore underlying mechanisms of action. Using whole-genome transcriptomic analysis, we investigated the effects of a wide range of Apis mellifica dilutions on gene expression profiles of human cells. RWPE-1 cells, a nonneoplastic adult human epithelial prostate cell line, were exposed to Apis mellifica preparations (3C, 5C, 7C, 9C, 12C, 15C, and 30C) or to the reference solvent solutions for 24 hours; nonexposed cells were also checked for gene expression variations. Our results showed that even the most diluted solutions retained the ability to trigger significant variations in gene expression. Gene pathway analysis revealed consistent variations in gene expression induced by Apis mellifica when compared to nonexposed reference cells but not to reference solvent solutions. Since the effects of Apis Mellifica at extreme dilutions did not show dose–effect relationships, the biological or functional interpretation of these results remains uncertain.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- Department of Neurofarba, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neurofarba, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Andrea Dei
- Department of Chemistry, University of Florence, Sesto Fiorentino, Florence, Italy
| | | | - Piero Dolara
- Department of Neurofarba, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Krizkova S, Kepinska M, Emri G, Rodrigo MAM, Tmejova K, Nerudova D, Kizek R, Adam V. Microarray analysis of metallothioneins in human diseases—A review. J Pharm Biomed Anal 2016; 117:464-73. [DOI: 10.1016/j.jpba.2015.09.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023]
|
14
|
Bellavite P, Signorini A, Marzotto M, Moratti E, Bonafini C, Olioso D. Cell sensitivity, non-linearity and inverse effects. HOMEOPATHY 2015; 104:139-60. [DOI: 10.1016/j.homp.2015.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
|
15
|
Hormetic effects of extremely diluted solutions on gene expression. HOMEOPATHY 2015; 104:116-22. [DOI: 10.1016/j.homp.2015.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/27/2014] [Accepted: 02/19/2015] [Indexed: 11/17/2022]
|
16
|
Transcriptome Profiling of Wheat Seedlings following Treatment with Ultrahigh Diluted Arsenic Trioxide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:851263. [PMID: 25525452 PMCID: PMC4265686 DOI: 10.1155/2014/851263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 01/09/2023]
Abstract
Plant systems are useful research tools to address basic questions in homeopathy as they make it possible to overcome some of the drawbacks encountered in clinical trials (placebo effect, ethical issues, duration of the experiment, and high costs). The objective of the present study was to test the hypothesis whether 7-day-old wheat seedlings, grown from seeds either poisoned with a sublethal dose of As2O3 or unpoisoned, showed different significant gene expression profiles after the application of ultrahigh diluted As2O3 (beyond Avogadro's limit) compared to water (control). The results provided evidence for a strong gene modulating effect of ultrahigh diluted As2O3 in seedlings grown from poisoned seeds: a massive reduction of gene expression levels to values comparable to those of the control group was observed for several functional classes of genes. A plausible hypothesis is that ultrahigh diluted As2O3 treatment induced a reequilibration of those genes that were upregulated during the oxidative stress by bringing the expression levels closer to the basal levels normally occurring in the control plants.
Collapse
|
17
|
Exploring the effects of homeopathic Apis mellifica preparations on human gene expression profiles. HOMEOPATHY 2014; 103:127-32. [DOI: 10.1016/j.homp.2014.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 01/15/2023]
|
18
|
Bellavite P, Marzotto M, Olioso D, Moratti E, Conforti A. High-dilution effects revisited. 2. Pharmacodynamic mechanisms. HOMEOPATHY 2014; 103:22-43. [DOI: 10.1016/j.homp.2013.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022]
|
19
|
Marijnen P. Existe-t-il une recherche dans le domaine du médicament homéopathique ? ACTUALITES PHARMACEUTIQUES 2012. [DOI: 10.1016/s0515-3700(12)71168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Bell A, Bell D, Weber RS, El-Naggar AK. CpG island methylation profiling in human salivary gland adenoid cystic carcinoma. Cancer 2011; 117:2898-909. [PMID: 21692051 DOI: 10.1002/cncr.25818] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND DNA methylation is a fundamental epigenetic event associated with physiologic and pathologic conditions, including cancer. Hypermethylation of CpG islands at active gene promoters leads to transcriptional repression, whereas hypomethylation is associated with gene overexpression. The aim of this study was to identify genes in adenoid cystic carcinoma (ACC) of salivary gland strongly deregulated by epigenetic CpG island methylation, to validate selected genes by conventional techniques, and to correlate the findings with clinicopathologic factors. METHODS The authors analyzed 16 matched normal and tumor tissues for aberrant DNA methylation using the methylated CpG island amplification and microarray method and the pyrosequencing technique. RESULTS Microarray analysis showed hypomethylation in 7 and hypermethylation in 32 CpG islands. Hypomethylation was identified in CpG islands near FBXO17, PHKG1, LOXL1, DOCK1, and PARVG. Hypermethylation was identified near genes encoding predominantly transcription factors (EN1, FOXE1, GBX2, FOXL1, TBX4, MEIS1, LBX2, NR2F2, POU3F3, IRX3, TFAP2C, NKX2-4, PITX1, NKX2-5), and 13 genes with different functions (MT1H, EPHX3, AQPEP, BCL2L11, SLC35D3, S1PR5, PNLIPRP1, CLIC6, RASAL, XRN2, GSTM5, FNDC1, INSRR). Four CpG islands by EN1, FOXE1, TBX4, and PITX1 were validated by pyrosequencing. CONCLUSIONS The highly methylated genes in tumor versus normal tissue are linked to developmental, apoptotic, and other fundamental cellular pathways, suggesting that down-regulation of these genes is associated with ACC development and progression. With EN1 hypermethylation showing potential as a possible biomarker for ACC in salivary gland, the biological and therapeutic implications of these findings require further preclinical investigations.
Collapse
Affiliation(s)
- Achim Bell
- Department of Pathology and Cancer Institute, The University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | |
Collapse
|