1
|
Gómez-López I, Eseberri I, Krisa S, Cano MP, Portillo MP. Effects of Opuntia stricta var. dillenii Extracts Obtained from Prickly Pear and an Industrial By-Product on Maturing Pre-Adipocytes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2967. [PMID: 39519886 PMCID: PMC11547701 DOI: 10.3390/plants13212967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Opuntia stricta var. dillenii, a member of the Cactaceae family, produces a fruit known as prickly pear. This fruit is rich in bioactive compounds, including betalains and phenolic compounds, which play an important role in health promotion due to their antioxidant and anti-inflammatory properties. This study aims to investigate the impact of prickly pear extracts obtained from the whole fruit, peel, pulp, and an industrial by-product (bagasse) on the differentiation of 3T3-L1 pre-adipocytes. During the differentiation process, 3T3-L1 pre-adipocytes were treated with prickly pear extracts at concentrations ranging from 10 to 100 μg/mL from day 0 to day 8 post-induction. Moreover, the potential mechanisms justifying the observed effects were assessed by RT-PCR. All extracts led to an increase in both triacylglycerol accumulation and cell number. In conclusion, the analysed extracts demonstrated adipogenic effects in 3T3-L1 maturing pre-adipocytes by increasing the expression of the c/ebp-β, srebf-1, and c/ebp-α genes. Additionally, a potential anti-inflammatory effect was observed through the upregulation of adiponectin.
Collapse
Affiliation(s)
- Iván Gómez-López
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.G.-L.); (M.P.C.)
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 01006 Vitoria-Gasteiz, Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Stéphanie Krisa
- University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, F-33140 Villenave d’Ornon, France;
| | - M. Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.G.-L.); (M.P.C.)
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Cacciatore I, Spalletta S, Di Rienzo A, Flati V, Fornasari E, Pierdomenico L, Del Boccio P, Valentinuzzi S, Costantini E, Toniato E, Martinotti S, Conte C, Di Stefano A, Robuffo I. Anti-Obesity and Anti-Inflammatory Effects of Novel Carvacrol Derivatives on 3T3-L1 and WJ-MSCs Cells. Pharmaceuticals (Basel) 2023; 16:340. [PMID: 36986440 PMCID: PMC10055808 DOI: 10.3390/ph16030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Obesity, a complex metabolic disease resulting from an imbalance between food consumption and energy expenditure, leads to an increase in adipocytes and chronic inflammatory conditions. The aim of this paper was to synthesize a small series of carvacrol derivatives (CD1-3) that are able to reduce both adipogenesis and the inflammatory status often associated with the progression of the obesity disease. (2) Methods: The synthesis of CD1-3 was performed using classical procedures in a solution phase. Biological studies were performed on three cell lines: 3T3-L1, WJ-MSCs, and THP-1. The anti-adipogenic properties of CD1-3 were evaluated using western blotting and densitometric analysis by assessing the expression of obesity-related proteins, such as ChREBP. The anti-inflammatory effect was estimated by measuring the reduction in TNF-α expression in CD1-3-treated THP-1 cells. (3) Results: CD1-3-obtained through a direct linkage between the carboxylic moiety of anti-inflammatory drugs (Ibuprofen, Flurbiprofen, and Naproxen) and the hydroxyl group of carvacrol-have an inhibitory effect on the accumulation of lipids in both 3T3-L1 and WJ-MSCs cell cultures and an anti-inflammatory effect by reducing TNF- α levels in THP-1 cells. (4) Conclusions: Considering the physicochemical properties, stability, and biological data, the CD3 derivative-obtained by a direct linkage between carvacrol and naproxen-resulted in the best candidate, displaying anti-obesity and anti-inflammatory effects in vitro.
Collapse
Affiliation(s)
- Ivana Cacciatore
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sonia Spalletta
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa Di Rienzo
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Erika Fornasari
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Pierdomenico
- Department of Medicine and Aging Sciences, Center on Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Erica Costantini
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Elena Toniato
- Department of Innovative Technology in Medicine and Odontoiatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Martinotti
- Department of Innovative Technology in Medicine and Odontoiatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Iole Robuffo
- Department of Medicine and Aging Sciences, Center on Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute of Molecular Genetics “Luigi Luca Cavalli Sforza”, National Research Council, Section of Chieti, 66100 Chieti, Italy
| |
Collapse
|
3
|
Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, Chen W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front Cardiovasc Med 2022; 9:842980. [PMID: 35528835 PMCID: PMC9072665 DOI: 10.3389/fcvm.2022.842980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association with increased metabolic syndrome such as cardio- and cerebrovascular disorders and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to treat NAFLD and metabolic syndrome disease without clarified defined mechanisms. Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved steatosis by reducing the delivery of metabolic substrates to liver as a promising way. Here we systematic review evidence showing that Danshen against NAFLD through diverse and crossing mechanisms based on metabolic targets. A synopsis of the phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic targets regulating the progression of NAFLD is initially provided, followed by the pharmacological activity of Danshen in the management NAFLD. And then, the possible mechanisms of Danshen in the management of NAFLD based on metabolic targets are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate response element–binding protein (ChREBP) related with lipid metabolism pathway, and peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the others associated with pleiotropic metabolism will be discussed. Finally, providing a critical assessment of the preclinic and clinic model and the molecular mechanism in NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- *Correspondence: Lei Wang,
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- Weidong Chen,
| |
Collapse
|
4
|
Alizadeh M, Jalal M, Hamed K, Saber A, Kheirouri S, Pourteymour Fard Tabrizi F, Kamari N. Recent Updates on Anti-Inflammatory and Antimicrobial Effects of Furan Natural Derivatives. J Inflamm Res 2020; 13:451-463. [PMID: 32884326 PMCID: PMC7443407 DOI: 10.2147/jir.s262132] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
The furan nucleus is found in a large number of biologically active materials. In recent years, many natural furan derivatives were isolated and their biological effects were investigated. In this review, we focused on the anti-inflammatory and antimicrobial effects of some natural furans and discussed their effects on the immune system. Our investigation revealed that furan natural derivatives have effective antioxidant activities and exert regulatory effects on various cellular activities by modifying some signaling pathways such as MAPK (mitogen-activated Protein Kinase) and PPAR-ɣ (peroxisome proliferator-activated receptor gamma). The antimicrobial activity of these natural compounds was performed through selective inhibition of microbial growth and modification of enzymes. Further studies are needed for isolation and detection of different furan derivatives from natural compounds and investigation of their precise mechanisms for revealing health beneficial effects of these compounds.
Collapse
Affiliation(s)
- Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moludi Jalal
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khodaei Hamed
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Saber
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Negin Kamari
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Orgah JO, He S, Wang Y, Jiang M, Wang Y, Orgah EA, Duan Y, Zhao B, Zhang B, Han J, Zhu Y. Pharmacological potential of the combination of Salvia miltiorrhiza (Danshen) and Carthamus tinctorius (Honghua) for diabetes mellitus and its cardiovascular complications. Pharmacol Res 2020; 153:104654. [PMID: 31945473 DOI: 10.1016/j.phrs.2020.104654] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/15/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome, such as diabetes mellitus, obesity, atherosclerosis, and high blood pressure (HBP), are closely linked pathophysiologically. However, current monotherapies for metabolic syndrome fail to target the multifactorial pathology via multiple mechanisms, as well as resolving the dysfunctionality of the cells and organs of the body. We aimed to provide a comprehensive and up-to-date review of the pharmacological advances, therapeutic potential, and phytochemistry of Salvia miltiorrhiza, Carthamus tinctorius, and Danhong injection (DHI). We discussed the molecular mechanisms of the bioactive constituents relating to diabetes mellitus and metabolic disease for further research and drug development. Interestingly, Salvia miltiorrhiza, Carthamus tinctorius, and DHI have anti-inflammatory, anti-glycemic, anti-thrombotic, and anti-cancer properties; and they mainly act by targeting the dysfunctional vasculatures including the inflammatory components of the disease to provide vascular repair as well as resolving oxidative stress. The major bioactive chemical constituents of these plants include polyphenolic acids, diterpene compounds, carthamin, and hydroxysafflor yellow A. Treatment of diabetes mellitus and its associated cardiovascular complication requires a comprehensive approach involving the use of appropriate traditional Chinese medicine formula. Danshen, Honghua, and DHI target the multiple risk factors regulating the physiologic function of the body and restore normalcy, apart from the traditional advice on exercise and diet control as treatment options in a metabolic syndrome patient.
Collapse
Affiliation(s)
- John O Orgah
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Yule Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Miaomiao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Emmanuel A Orgah
- Nigeria Natural Medicine Development Agency, 9 Kofo Abayomi Street, Victoria Island Logos, Nigeria
| | - Yajun Duan
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300193, China; College of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Buchang Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Boli Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Jihong Han
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300193, China; College of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China.
| |
Collapse
|
6
|
Kang ES, Ham SA, Hwang JS, Lee CK, Seo HG. Effects of Garcinia cambogia Extract on the Adipogenic Differentiation and Lipotoxicity. Korean J Food Sci Anim Resour 2013. [DOI: 10.5851/kosfa.2013.33.3.411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
7
|
Huang L, Hu F, Ma Q, Hu Y. CuBr-catalyzed cascade reaction of 2-substituted-3-(1-alkynyl)chromones to synthesize functionalized 3-acylfurans. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.04.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Synthesis, characterization and cytotoxic activity of ferrocenyl hydrazone complexes containing a furan moiety. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1090-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Kim HS, Sung HY, Kim MS, Kim JL, Kang MK, Gong JH, Park HS, Kang YH. Oleanolic acid suppresses resistin induction in adipocytes by modulating Tyk-STAT signaling. Nutr Res 2013; 33:144-53. [PMID: 23399665 DOI: 10.1016/j.nutres.2012.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/15/2012] [Accepted: 12/27/2012] [Indexed: 01/08/2023]
Abstract
Oleanolic acid, a naturally occurring triterpenoid widely distributed in foods and medicinal plants, has anticancer, antioxidant, and antiaging properties. We hypothesized that oleanolic acid would suppress the production of the inflammatory adipokine resistin during adipogenic differentiation of 3T3-L1 adipocytes. 3T3-L1 adipocytes were cultured in adipogenic media with and without 1 to 25 μM oleanolic acid for up to 8 days to stimulate adipocyte differentiation. Adipocyte production of resistin was markedly enhanced during differentiation and was dose dependently attenuated by 1 to 25 μM oleanolic acid. This study further investigated whether Tyk2-Stat1/3 signaling was responsible for cellular production of resistin. Signal transducer and activator of transcription factor (STAT) 1 and STAT3 were activated during differentiation in a disparate temporal fashion; STAT1 was maximally phosphorylated on day 5 after initiating differentiation, whereas STAT3 was rapidly activated within 1 day of differentiation. When oleanolic acid was supplied to differentiating adipocytes, STAT1 and STAT3 phosphorylation was substantially suppressed. Upstream Tyk2 was rapidly activated in a manner similar to STAT3 and reactivated on days 3 to 5 after initiating differentiation, which was attenuated by incubating adipocytes with oleanolic acid. In addition, cellular expression of suppressor of cytokine signaling 3 (SOCS3), which inhibits Tyk2 activity, was markedly promoted from day 5 of adipocyte differentiation. Oleanolic acid attenuated SOCS3 expression, which was highly enhanced during the late phase of differentiation. Taken together, oleanolic acid suppressed adipocyte differentiation-associated resistin and adipogenesis production by disturbing the Tyk2-STAT1/3 signaling pathway and promoting SOCS3 expression. Therefore, oleanolic acid may be a possible bioactive agent that blunts adipogenesis and adipokine inflammation.
Collapse
Affiliation(s)
- Hyun-Sung Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Park GM, Jun JG, Kim JK. XH-14, a novel danshen methoxybenzo[b]furan derivative, exhibits anti-inflammatory properties in lipopolysaccharide-treated RAW 264.7 cells. JOURNAL OF INFLAMMATION-LONDON 2013; 10:1. [PMID: 23305138 PMCID: PMC3551675 DOI: 10.1186/1476-9255-10-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 12/28/2012] [Indexed: 12/16/2022]
Abstract
Background XH-14 isolated from Salvia miltiorrhiza is a bioactive component and adenosine antagonist. In the present study, we evaluated anti-inflammatory properties of XH-14 in murine macrophages. Methods RAW 264.7 murine macrophage cell line was cultured with various concentrations of XH-14 in the absence or presence of lipopolysaccharide (LPS). LPS-induced release and mRNA expression of inflammatory mediators were examined by ELISA and real-time PCR. The modification of signal pathways involved in inflammatory reactions was determined by Western blotting analysis. Results XH-14 suppressed the generation of nitric oxide (NO) and prostaglandin E2, and the expression of inducible NO synthase and cyclooxygenase-2 induced by LPS. Similarly, XH-14 inhibited the release of pro-inflammatory cytokines induced by LPS in RAW 264.7 cells. The underlying mechanism of XH-14 on anti-inflammatory action was correlated with down-regulation of mitogen-activated protein kinase and activator protein-1 activation. Conclusions XH-14 inhibits the production of several inflammatory mediators and so might be useful for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Geun-Mook Park
- Department of Biomedical Science, Catholic University of Daegu, 330 Geumrak-Ri, Gyeoungsan-Si, 700-712, South Korea.
| | | | | |
Collapse
|
11
|
Lee ES, Choi JS, Kim MS, You HJ, Ji GE, Kang YH. Ginsenoside metabolite compound K differentially antagonizing tumor necrosis factor-α-induced monocyte-endothelial trafficking. Chem Biol Interact 2011; 194:13-22. [PMID: 21875580 DOI: 10.1016/j.cbi.2011.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/04/2011] [Accepted: 08/15/2011] [Indexed: 01/15/2023]
Abstract
Human leukocyte endothelial adhesion and transmigration occur in the early stage of the pathogenesis of atherosclerosis. Vascular endothelial cells are targeted by pro-inflammatory cytokines modulating many gene proteins responsible for cell adhesion, thrombosis and inflammatory responses. This study examined the potential of compound K to inhibit the pro-inflammatory cytokine TNF-α induction of monocyte adhesion onto TNF-α-activated human umbilical vein endothelial cells (HUVEC). HUVEC were cultured with 10ng/ml TNF-α with individual ginsenosides of Rb1, Rc, Re, Rh1 and compound K (CK). Ginsenosides at doses of ⩽50μM did not show any cytotoxicity. TNF-α induced THP-1 monocyte adhesion to HUVEC, and such induction was attenuated by Rh1 and CK. Consistently, CK suppressed TNF-α-induced expression of HUVEC adhesion molecules of VCAM-1, ICAM-1 and E-selectin, and also Rh1 showed a substantial inhibition. Rh1 and CK dampened induction of counter-receptors, α4/β1 integrin VLA-4 and αL/β2 integrin LFA-1 in TNF-α-treated THP-1 cells. Additionally, CK diminished THP-1 secretion of MMP-9 required during transmigration, inhibiting transendothelial migration of THP-1 cells. CK blunted TNF-α-promoted IL-8 secretion of HUVEC and CXCR1 expression of THP-1 monocytes. Furthermore, TNF-α-activated endothelial IκB phosphorylation and NF-κB nuclear translocation were disturbed by CK, and TNF-α induction of α4/β1 integrin was abrogated by the NF-κB inhibitor SN50. These results demonstrate that CK exerts anti-atherogenic activity with blocking leukocyte endothelial interaction and transmigration through negatively mediating NF-κB signaling.
Collapse
Affiliation(s)
- Eun-Sook Lee
- Department of Food and Nutrition and the Regional Research Universities Program/Medical & Bio-Materials Research Center, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
Kong CS, Lee JI, Kim JA, Seo Y. In vitro evaluation on the antiobesity effect of lignans from the flower buds of Magnolia denudata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5665-5670. [PMID: 21462973 DOI: 10.1021/jf200230s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the present study, an attempt has been made to isolate antiobesity components from crude extracts of the flower buds of Magnolia denudata by CH(2)Cl(2) and MeOH solvents. The crude extracts were partitioned into n-hexane, 85% aqueous MeOH, n-butanol, and water fractions. Their antiobesity effects were evaluated by measuring the effect on adipogenic differentiation using 3T3-L1 cells. Among the fractions, n-hexane and 85% aqueous MeOH fractions effectively reduced the lipid accumulation and the regulation of the adipogenic transcription factor. Both n-hexane and 85% aqueous MeOH fractions were further separated by diverse chromatographic methods to give four lignans (A-D). In comparative analysis, the presence of the lignans during adipogenic differentiation reduced the absorbance values of eluted Oil Red O solution in the order of potency C > D > B > A. Moreover, C and D effectively downregulated SREBP1, PPARγ, and C/EBPα.
Collapse
Affiliation(s)
- Chang-Suk Kong
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan, Republic of Korea
| | | | | | | |
Collapse
|