1
|
Shanbhag AP, Bhowmik P. Cancer to Cataracts: The Mechanistic Impact of Aldo-Keto Reductases in Chronic Diseases. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:179-204. [PMID: 38947111 PMCID: PMC11202113 DOI: 10.59249/vtbv6559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Aldo-keto reductases (AKRs) are a superfamily of promiscuous enzymes that have been chiseled by evolution to act as catalysts for numerous regulatory pathways in humans. However, they have not lost their promiscuity in the process, essentially making them a double-edged sword. The superfamily is involved in multiple metabolic pathways and are linked to chronic diseases such as cataracts, diabetes, and various cancers. Unlike other detoxifying enzymes such as cytochrome P450s (CYP450s), short-chain dehydrogenases (SDRs), and medium-chain dehydrogenases (MDRs), that participate in essential pathways, AKRs are more widely distributed and have members with interchangeable functions. Moreover, their promiscuity is ubiquitous across all species and participates in the resistance of pathogenic microbes. Moreover, the introduction of synthetic substrates, such as synthetic molecules and processed foods, results in unwanted "toxification" due to enzyme promiscuity, leading to chronic diseases.
Collapse
Affiliation(s)
- Anirudh P. Shanbhag
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Novartis Healthcare Pvt. Ltd., Hyderabad, Telangana,
India
| | - Purnendu Bhowmik
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Centre for Cellular and Molecular Platforms (C-CAMP),
National Centre for Biological Sciences (NCBS), Bengaluru, Karnataka,
India
| |
Collapse
|
2
|
Juvinao-Quintero DL, Sanchez SE, Workalemahu T, Pinto N, Liang L, Williams MA, Gelaye B. Genetic association study of preterm birth and gestational age in a population-based case-control study in Peru. J Neonatal Perinatal Med 2024; 17:689-704. [PMID: 39302385 DOI: 10.3233/npm-230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Preterm birth (PTB) affects ∼15 million pregnancies worldwide. Genetic studies have identified several candidate loci for PTB, but results remain inconclusive and limited to European populations. Thus, we conducted a genome-wide association study (GWAS) of PTB and gestational age at delivery (GA) among 2,212 Peruvian women. METHODS PTB cases delivered≥20 weeks' but < 37 weeks' gestation, while controls delivered at term (≥37 weeks but <42 weeks). Multivariable regressions were used to identify genetic markers for PTB and GA (∼6 million SNPs), adjusting for maternal age and the first two genetic principal components. In silico functional analysis was conducted among top signals detected with an arbitrary P < 1.0×10-5 . We sought to replicate genetic markers for PTB and GA identified in Europeans, and we developed a genetic risk score for GA based on European markers. RESULTS Mean GA was 30 ± 4 weeks in PTB cases (N = 933) and 39 ± 1 in the controls (N = 1,279). No associatiosn were identified at genome-wide level. Nominal PTB variants were enriched for biological pathways associated with polyketide, progesterone, steroid hormones, and glycosyl metabolism. Nominal GA variants were enriched in intronic regions and cancer pathways. Variants in WNT4 associated with GA in Europeans were replicated in our study. A genetic risk score was associated with a 2-day longer GA (P = 0.002) in our sample. CONCLUSIONS This study identified various signals suggestively associated with PTB and GA in pregnant Peruvian women. None of these variants overlapped with signals previously identified in Europeans.
Collapse
Affiliation(s)
- D L Juvinao-Quintero
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - S E Sanchez
- Universidad de San Martin de Porres, Facultad de Medicina Humana, Instituto de Investigación, Lima, Peru
- Asociación Civil PROESA, Lima, Peru
| | - T Workalemahu
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, UT, USA
| | - N Pinto
- Asociación Civil PROESA, Lima, Peru
| | - L Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - M A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - B Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Chester M. Pierce, M.D. Division of Global Psychiatry, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Juvinao-Quintero DL, Sanchez SE, Workalemahu T, Pinto N, Liang L, Williams MA, Gelaye B. Genetic association study of Preterm birth and Gestational age in a population-based case-control study in Peru: Genetics of PTB and GA in pregnant women in Peru. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.22.23298891. [PMID: 38045296 PMCID: PMC10690348 DOI: 10.1101/2023.11.22.23298891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Preterm birth (PTB) is an adverse pregnancy outcome affecting ~15 million pregnancies worldwide. Genetic studies have identified several candidate loci for PTB, but results remain inconclusive and limited to European populations. Thus, we conducted a genome-wide association study (GWAS) of PTB and gestational age at delivery (GA) among 2,212 Peruvian women. PTB cases delivered ≥ 20 weeks' but < 37 weeks' gestation, while controls delivered at term (≥ 37 weeks but < 42 weeks). After imputation (TOPMED) and quality control, we assessed the association of ~6 million SNPs with PTB and GA using multivariable regression models adjusted for maternal age and the first two genetic principal components. In silico functional analysis (FUMA-GWAS) was conducted among top signals detected with an arbitrary P < 1.0×10-5 in each GWAS. We sought to replicate genetic associations with PTB and GA identified in Europeans, and we developed a genetic risk score for GA based on European markers. Mean GA was 30 ± 4 weeks in PTB cases (N=933) and 39 ± 1 in the controls (N=1,279). PTB cases were slightly older and had higher C-sections and vaginal bleeding than controls. No association was identified at genome-wide level. Top suggestive (P < 1.0×10-5) signals were seen at rs13151645 (LINC01182) for PTB, and at rs72824565 (CTNNA2) for GA. Top PTB variants were enriched for biological pathways associated with polyketide, progesterone, steroid hormones, and glycosyl metabolism. Top GA variants were enriched in intronic regions and cancer pathways, and these genes were upregulated in the brain and subcutaneous adipose tissue. In combination with non-genetic risk factors, top SNPs explained 14% and 15% of the phenotypic variance of PTB and GA in our sample, but these results need to be interpreted with caution. Variants in WNT4 associated with GA in Europeans were replicated in our study. The genetic risk score based in European markers, was associated with a 2-day longer GA (R2=0.003, P=0.002) per standard deviation increase in the score in our sample. This genetic association study identified various signals suggestively associated with PTB and GA in a non-European population; they were linked to relevant biological pathways related to the metabolism of progesterone, prostanoid, and steroid hormones, and genes associated with GA were significantly upregulated in relevant tissues for the pathophysiology of PTB based on the in-silico functional analysis. None of these top variants overlapped with signals previously identified for PTB or GA in Europeans.
Collapse
Affiliation(s)
| | - Sixto E. Sanchez
- Facultad de Medicina Humana, Instituto de Investigación, Universidad de San Martin de Porres, Lima, Peru
- Asociación Civil PROESA, Lima, Peru
| | | | | | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michelle A. Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Chester M. Pierce, M.D. Division of Global Psychiatry, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Overview of human 20 alpha-hydroxysteroid dehydrogenase (AKR1C1): Functions, regulation, and structural insights of inhibitors. Chem Biol Interact 2021; 351:109746. [PMID: 34780792 DOI: 10.1016/j.cbi.2021.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Human aldo-keto reductase family 1C1 (AKR1C1) is an important enzyme involved in human hormone metabolism, which is mainly responsible for the metabolism of progesterone in the human body. AKR1C1 is highly expressed and has an important relationship with the occurrence and development of various diseases, especially some cancers related to hormone metabolism. Nowadays, many inhibitors against AKR1C1 have been discovered, including some synthetic compounds and natural products, which have certain inhibitory activity against AKR1C1 at the target level. Here we briefly reviewed the physiological and pathological functions of AKR1C1 and the relationship with the disease, and then summarized the development of AKR1C1 inhibitors, elucidated the interaction between inhibitors and AKR1C1 through molecular docking results and existing co-crystal structures. Finally, we discussed the design ideals of selective AKR1C1 inhibitors from the perspective of AKR1C1 structure, discussed the prospects of AKR1C1 in the treatment of human diseases in terms of biomarkers, pre-receptor regulation and single nucleotide polymorphisms, aiming to provide new ideas for drug research targeting AKR1C1.
Collapse
|
5
|
Nikolaou N, Hodson L, Tomlinson JW. The role of 5-reduction in physiology and metabolic disease: evidence from cellular, pre-clinical and human studies. J Steroid Biochem Mol Biol 2021; 207:105808. [PMID: 33418075 DOI: 10.1016/j.jsbmb.2021.105808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 01/01/2023]
Abstract
The 5-reductases (5α-reductase types 1, 2 and 3 [5αR1-3], 5β-reductase [5βR]) are steroid hormone metabolising enzymes that hold fundamental roles in human physiology and pathology. They possess broad substrate specificity converting many steroid hormones to their 5α- and 5β-reduced metabolites, as well as catalysing crucial steps in bile acid synthesis. 5αRs are fundamentally important in urogenital development by converting testosterone to the more potent androgen 5α-dihydrotestosterone (5αDHT); inactivating mutations in 5αR2 lead to disorders of sexual development. Due to the ability of the 5αRs to generate 5αDHT, they are an established drug target, and 5αR inhibitors are widely used for the treatment of androgen-dependent benign or malignant prostatic diseases. There is an emerging body of evidence to suggest that the 5-reductases can impact upon aspects of health and disease (other than urogenital development); alterations in their expression and activity have been associated with metabolic disease, polycystic ovarian syndrome, inflammation and bone metabolism. This review will outline the evidence base for the extra-urogenital role of 5-reductases from in vitro cell systems, pre-clinical models and human studies, and highlight the potential adverse effects of 5αR inhibition in human health and disease.
Collapse
Affiliation(s)
- Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK.
| |
Collapse
|
6
|
Abstract
Vertebrates synthesize a diverse set of steroids and bile acids that undergo bacterial biotransformations. The endocrine literature has principally focused on the biochemistry and molecular biology of host synthesis and tissue-specific metabolism of steroids. Host-associated microbiota possess a coevolved set of steroid and bile acid modifying enzymes that match the majority of host peripheral biotransformations in addition to unique capabilities. The set of host-associated microbial genes encoding enzymes involved in steroid transformations is known as the sterolbiome. This review focuses on the current knowledge of the sterolbiome as well as its importance in medicine and agriculture.
Collapse
|
7
|
Penning TM, Chen M, Jin Y. Promiscuity and diversity in 3-ketosteroid reductases. J Steroid Biochem Mol Biol 2015; 151:93-101. [PMID: 25500069 PMCID: PMC4458445 DOI: 10.1016/j.jsbmb.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/03/2014] [Accepted: 12/07/2014] [Indexed: 12/16/2022]
Abstract
Many steroid hormones contain a Δ(4)-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1-AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1-AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| | - Mo Chen
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Yi Jin
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
8
|
Gifford CA, Branham KA, Ellison JO, Gómez BI, Lemley CO, Hart CG, Krehbiel CR, Bernhard BC, Maxwell CL, Goad CL, Hallford DM, Hernandez Gifford JA. Effect of anabolic implants on adrenal cortisol synthesis in feedlot beef cattle implanted early or late in the finishing phase. Physiol Behav 2014; 138:118-23. [PMID: 25447333 DOI: 10.1016/j.physbeh.2014.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 12/17/2022]
Abstract
Implantation of anabolic steroids to increase growth rate in beef cattle impacts adrenal glucocorticoid production. The mechanism by which combination androgen and estrogen implants reduce cortisol biosynthesis in heifers is not clear. The objective of this study was to identify whether pituitary or adrenal gene expression and liver enzyme activity may contribute to altered serum cortisol concentrations in heifers receiving a combination implant. On d 0 of a 122-d finishing phase, 187 predominantly Angus heifers (361 kg) approximately 14 months old were randomly assigned to one of three implant groups: (1) non-implanted control, (2) implanted at the beginning of the finishing phase (d 0; early implant) with a combination implant (200mg TBA+20mg E2; Revalor 200®), and (3) implanted during the late stage of the finishing phase (d 56; late implant) with Revalor 200®. At d 56, body weight (BW) was greater (P<0.0001) for the early implanted heifers (456 ± 1.9 kg) compared to 437 and 435 (± 1.8) kg for control and late implanted heifers, respectively. Final BW (d 122) was similar between both implanted groups and heavier than non-implanted controls (P<0.0001). Serum cortisol was similar among groups at d 0 (P=0.86) however, by d 28 heifers receiving the combination implant had reduced (P<0.05) serum cortisol concentrations (31.2 ng/mL) compared to controls (49.4 ng/mL) and late (48.2 ng/mL) groups. On d 84 cortisol was similar (P=0.75) among implanted heifers and was less (P<0.01) than non-implanted heifers. Expression of pituitary and adrenal genes involved in glucocorticoid synthesis was evaluated at d 28/29 or 84/85; however, despite decreased serum cortisol in implanted heifers, no change in mRNA expression was demonstrated. Liver CYP3A enzyme activity at d 28/29 was decreased 59% in early implanted heifers compared to control heifers (P=0.01). Additionally, at d 84/85 AKR1C activity was greatest (P=0.01) in control heifers compared to both implanted groups. Data suggest that components of hypothalamic-pituitary-adrenal axis are influenced by exposure to exogenous hormones and this should be recognized when considering cortisol levels as a marker for stress response.
Collapse
Affiliation(s)
- C A Gifford
- Oklahoma State University, Department of Animal Science, Stillwater, OK 74078, USA
| | - K A Branham
- Oklahoma State University, Department of Animal Science, Stillwater, OK 74078, USA
| | - J O Ellison
- Oklahoma State University, Department of Animal Science, Stillwater, OK 74078, USA
| | - B I Gómez
- Oklahoma State University, Department of Animal Science, Stillwater, OK 74078, USA
| | - C O Lemley
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS 39762, USA
| | - C G Hart
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS 39762, USA
| | - C R Krehbiel
- Oklahoma State University, Department of Animal Science, Stillwater, OK 74078, USA
| | - B C Bernhard
- Oklahoma State University, Department of Animal Science, Stillwater, OK 74078, USA
| | - C L Maxwell
- Oklahoma State University, Department of Animal Science, Stillwater, OK 74078, USA
| | - C L Goad
- Oklahoma State University, Department of Statistics, Stillwater, OK 74078, USA
| | - D M Hallford
- New Mexico State University, Department of Animal and Range Sciences, Las Cruces, NM 88003, USA
| | | |
Collapse
|
9
|
Rižner TL, Penning TM. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids 2014; 79:49-63. [PMID: 24189185 PMCID: PMC3870468 DOI: 10.1016/j.steroids.2013.10.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/16/2013] [Accepted: 10/24/2013] [Indexed: 12/30/2022]
Abstract
Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ(4)-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia.
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
|
11
|
Liedtke AJ, Adeniji A, Chen M, Byrns MC, Jin Y, Christianson DW, Marnett LJ, Penning TM. Development of potent and selective indomethacin analogues for the inhibition of AKR1C3 (Type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase) in castrate-resistant prostate cancer. J Med Chem 2013; 56:2429-46. [PMID: 23432095 PMCID: PMC3638264 DOI: 10.1021/jm3017656] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Indexed: 12/02/2022]
Abstract
Castrate-resistant prostate cancer (CRPC) is a fatal, metastatic form of prostate cancer. CRPC is characterized by reactivation of the androgen axis due to changes in androgen receptor signaling and/or adaptive intratumoral androgen biosynthesis. AKR1C3 is upregulated in CRPC where it catalyzes the formation of potent androgens. This makes AKR1C3 a target for the treatment of CRPC. AKR1C3 inhibitors should not inhibit AKR1C1/AKR1C2, which inactivate 5α-dihydrotestosterone. Indomethacin, used to inhibit cyclooxygenase, also inhibits AKR1C3 and displays selectivity over AKR1C1/AKR1C2. Parallel synthetic strategies were used to generate libraries of indomethacin analogues, which exhibit reduced cyclooxygenase inhibitory activity but retain AKR1C3 inhibitory potency and selectivity. The lead compounds inhibited AKR1C3 with nanomolar potency, displayed >100-fold selectivity over AKR1C1/AKR1C2, and blocked testosterone formation in LNCaP-AKR1C3 cells. The AKR1C3·NADP(+)·2'-des-methyl-indomethacin crystal structure was determined, and it revealed a unique inhibitor binding mode. The compounds reported are promising agents for the development of therapeutics for CRPC.
Collapse
Affiliation(s)
- Andy J. Liedtke
- Departments of Biochemistry,
Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology,
Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville,
Tennessee 37232-0146, United States
| | - Adegoke
O. Adeniji
- Department of Pharmacology and
Center of Excellence in Environmental Toxicology, Perelman School
of Medicine, University of Pennsylvania, 1315 BRB II/III, 420 Curie Boulevard, Philadelphia, Pennsylvania
19104-6061, United States
| | - Mo Chen
- Department of Pharmacology and
Center of Excellence in Environmental Toxicology, Perelman School
of Medicine, University of Pennsylvania, 1315 BRB II/III, 420 Curie Boulevard, Philadelphia, Pennsylvania
19104-6061, United States
| | - Michael C. Byrns
- Department of Pharmacology and
Center of Excellence in Environmental Toxicology, Perelman School
of Medicine, University of Pennsylvania, 1315 BRB II/III, 420 Curie Boulevard, Philadelphia, Pennsylvania
19104-6061, United States
| | - Yi Jin
- Department of Pharmacology and
Center of Excellence in Environmental Toxicology, Perelman School
of Medicine, University of Pennsylvania, 1315 BRB II/III, 420 Curie Boulevard, Philadelphia, Pennsylvania
19104-6061, United States
| | - David W. Christianson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street,
Philadelphia, Pennsylvania 19104-6323, United States
| | - Lawrence J. Marnett
- Departments of Biochemistry,
Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology,
Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville,
Tennessee 37232-0146, United States
| | - Trevor M. Penning
- Department of Pharmacology and
Center of Excellence in Environmental Toxicology, Perelman School
of Medicine, University of Pennsylvania, 1315 BRB II/III, 420 Curie Boulevard, Philadelphia, Pennsylvania
19104-6061, United States
| |
Collapse
|
12
|
Identification of budesonide metabolites in human urine after oral administration. Anal Bioanal Chem 2012; 404:325-40. [PMID: 22573060 DOI: 10.1007/s00216-012-6037-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/29/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Budesonide (BUD) is a glucocorticoid widely used for the treatment of asthma, rhinitis, and inflammatory bowel disease. Its use in sport competitions is prohibited when administered by oral, intravenous, intramuscular, or rectal routes. However, topical preparations are not prohibited. Strategies to discriminate between legal and forbidden administrations have to be developed by doping control laboratories. For this reason, metabolism of BUD has been re-evaluated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with different scan methods. Urine samples obtained after oral administration of 3 mg of BUD to two healthy volunteers have been analyzed for metabolite detection in free and glucuronide metabolic fractions. Structures of the metabolites have been studied by LC-MS/MS using collision induced dissociation and gas chromatography-mass spectrometry (GC/MS) in full scan mode with electron ionization. Combination of all structural information allowed the proposition of the most comprehensive picture for BUD metabolism in humans to this date. Overall, 16 metabolites including ten previously unreported compounds have been detected. The main metabolite is 16α-hydroxy-prednisolone resulting from the cleavage of the acetal group. Other metabolites without the acetal group have been identified such as those resulting from reduction of C20 carbonyl group, oxidation of the C11 hydroxyl group and reduction of the A ring. Metabolites maintaining the acetal group have also been identified, resulting from 6-hydroxylation (6α and 6β-hydroxy-budesonide), 23-hydroxylation, reduction of C6-C7, oxidation of the C11 hydroxyl group, and reduction of the C20 carbonyl group. Metabolites were mainly excreted in the free fraction. All of them were excreted in urine during the first 24 h after administration, and seven of them were still detected up to 48 h after administration for both volunteers.
Collapse
|
13
|
Adeniji AO, Twenter BM, Byrns MC, Jin Y, Chen M, Winkler JD, Penning TM. Development of potent and selective inhibitors of aldo-keto reductase 1C3 (type 5 17β-hydroxysteroid dehydrogenase) based on N-phenyl-aminobenzoates and their structure-activity relationships. J Med Chem 2012; 55:2311-23. [PMID: 22263837 DOI: 10.1021/jm201547v] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldo-keto reductase 1C3 (AKR1C3; type 5 17β-hydroxysteroid dehydrogenase) is overexpressed in castration resistant prostate cancer (CRPC) and is implicated in the intratumoral biosynthesis of testosterone and 5α-dihydrotestosterone. Selective AKR1C3 inhibitors are required because compounds should not inhibit the highly related AKR1C1 and AKR1C2 isoforms which are involved in the inactivation of 5α-dihydrotestosterone. NSAIDs, N-phenylanthranilates in particular, are potent but nonselective AKR1C3 inhibitors. Using flufenamic acid, 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid, as lead compound, five classes of structural analogues were synthesized and evaluated for AKR1C3 inhibitory potency and selectivity. Structure-activity relationship (SAR) studies revealed that a meta-carboxylic acid group relative to the amine conferred pronounced AKR1C3 selectivity without loss of potency, while electron withdrawing groups on the phenylamino B-ring were optimal for AKR1C3 inhibition. Lead compounds did not inhibit COX-1 or COX-2 but blocked the AKR1C3 mediated production of testosterone in LNCaP-AKR1C3 cells. These compounds offer promising leads toward new therapeutics for CRPC.
Collapse
Affiliation(s)
- Adegoke O Adeniji
- Department of Pharmacology and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Roberson AE, Hyatt K, Kenkel C, Hanson K, Myers DA. Interleukin 1β Regulates Progesterone Metabolism in Human Cervical Fibroblasts. Reprod Sci 2011; 19:271-81. [DOI: 10.1177/1933719111419246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Amy E. Roberson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kimberly Hyatt
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christy Kenkel
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Krista Hanson
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dean A. Myers
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|