1
|
Rising A, Cederlund E, Palmberg C, Uhlhorn H, Gaunitz S, Nordling K, Ågren E, Ihse E, Westermark GT, Tjernberg L, Jörnvall H, Johansson J, Westermark P. Systemic AA amyloidosis in the red fox (Vulpes vulpes). Protein Sci 2017; 26:2312-2318. [PMID: 28791746 DOI: 10.1002/pro.3264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/30/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022]
Abstract
Amyloid A (AA) amyloidosis occurs spontaneously in many mammals and birds, but the prevalence varies considerably among different species, and even among subgroups of the same species. The Blue fox and the Gray fox seem to be resistant to the development of AA amyloidosis, while Island foxes have a high prevalence of the disease. Herein, we report on the identification of AA amyloidosis in the Red fox (Vulpes vulpes). Edman degradation and tandem MS analysis of proteolyzed amyloid protein revealed that the amyloid partly was composed of full-length SAA. Its amino acid sequence was determined and found to consist of 111 amino acid residues. Based on inter-species sequence comparisons we found four residue exchanges (Ser31, Lys63, Leu71, Lys72) between the Red and Blue fox SAAs. Lys63 seems unique to the Red fox SAA. We found no obvious explanation to how these exchanges might correlate with the reported differences in SAA amyloidogenicity. Furthermore, in contrast to fibrils from many other mammalian species, the isolated amyloid fibrils from Red fox did not seed AA amyloidosis in a mouse model.
Collapse
Affiliation(s)
- Anna Rising
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, 141 57, Sweden
| | - Ella Cederlund
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Carina Palmberg
- Center of Proteomics Karolinska (PKKI), Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Henrik Uhlhorn
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, 751 89, Sweden
| | - Stefan Gaunitz
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, 141 57, Sweden
| | - Kerstin Nordling
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, 141 57, Sweden
| | - Erik Ågren
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, 751 89, Sweden
| | - Elisabet Ihse
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | | | - Lars Tjernberg
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, 141 57, Sweden
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Jan Johansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, 141 57, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| |
Collapse
|
2
|
Ashraf R, Rashid N, Basheer S, Aziz I, Akhtar M. Glutathione-Dependent Formaldehyde Dehydrogenase Homolog from Bacillus subtilis Strain R5 is a Propanol-Preferring Alcohol Dehydrogenase. BIOCHEMISTRY (MOSCOW) 2017; 82:13-23. [PMID: 28320283 DOI: 10.1134/s0006297917010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genome search of Bacillus subtilis revealed the presence of an open reading frame annotated as glutathione-dependent formaldehyde dehydrogenase/alcohol dehydrogenase. The open reading frame consists of 1137 nucleotides corresponding to a polypeptide of 378 amino acids. To examine whether the encoded protein is glutathione-dependent formaldehyde dehydrogenase or alcohol dehydrogenase, we cloned and characterized the gene product. Enzyme activity assays revealed that the enzyme exhibits a metal ion-dependent alcohol dehydrogenase activity but no glutathione-dependent formaldehyde dehydrogenase or aldehyde dismutase activity. Although the protein is of mesophilic origin, optimal temperature for the enzyme activity is 60°C. Thermostability analysis by circular dichroism spectroscopy revealed that the protein is stable up to 60°C. Presence or absence of metal ions in the reaction mixture did not affect the enzyme activity. However, metal ions were necessary at the time of protein production and folding. There was a marked difference in the enzyme activity and CD spectra of the proteins produced in the presence and absence of metal ions. The experimental results obtained in this study demonstrate that the enzyme is a bona-fide alcohol dehydrogenase and not a glutathione-dependent formaldehyde dehydrogenase.
Collapse
Affiliation(s)
- Raza Ashraf
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | | | | | | | | |
Collapse
|
3
|
Borràs E, Albalat R, Duester G, Parés X, Farrés J. The Xenopus alcohol dehydrogenase gene family: characterization and comparative analysis incorporating amphibian and reptilian genomes. BMC Genomics 2014; 15:216. [PMID: 24649825 PMCID: PMC4028059 DOI: 10.1186/1471-2164-15-216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/11/2014] [Indexed: 11/12/2022] Open
Abstract
Background The alcohol dehydrogenase (ADH) gene family uniquely illustrates the concept of enzymogenesis. In vertebrates, tandem duplications gave rise to a multiplicity of forms that have been classified in eight enzyme classes, according to primary structure and function. Some of these classes appear to be exclusive of particular organisms, such as the frog ADH8, a unique NADP+-dependent ADH enzyme. This work describes the ADH system of Xenopus, as a model organism, and explores the first amphibian and reptilian genomes released in order to contribute towards a better knowledge of the vertebrate ADH gene family. Results Xenopus cDNA and genomic sequences along with expressed sequence tags (ESTs) were used in phylogenetic analyses and structure-function correlations of amphibian ADHs. Novel ADH sequences identified in the genomes of Anolis carolinensis (anole lizard) and Pelodiscus sinensis (turtle) were also included in these studies. Tissue and stage-specific libraries provided expression data, which has been supported by mRNA detection in Xenopus laevis tissues and regulatory elements in promoter regions. Exon-intron boundaries, position and orientation of ADH genes were deduced from the amphibian and reptilian genome assemblies, thus revealing syntenic regions and gene rearrangements with respect to the human genome. Our results reveal the high complexity of the ADH system in amphibians, with eleven genes, coding for seven enzyme classes in Xenopus tropicalis. Frogs possess the amphibian-specific ADH8 and the novel ADH1-derived forms ADH9 and ADH10. In addition, they exhibit ADH1, ADH2, ADH3 and ADH7, also present in reptiles and birds. Class-specific signatures have been assigned to ADH7, and ancestral ADH2 is predicted to be a mixed-class as the ostrich enzyme, structurally close to mammalian ADH2 but with class-I kinetic properties. Remarkably, many ADH1 and ADH7 forms are observed in the lizard, probably due to lineage-specific duplications. ADH4 is not present in amphibians and reptiles. Conclusions The study of the ancient forms of ADH2 and ADH7 sheds new light on the evolution of the vertebrate ADH system, whereas the special features showed by the novel forms point to the acquisition of new functions following the ADH gene family expansion which occurred in amphibians.
Collapse
Affiliation(s)
| | | | | | | | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|