1
|
Wilson GN, Tonk VS. Clinical-Genomic Analysis of 1261 Patients with Ehlers-Danlos Syndrome Outlines an Articulo-Autonomic Gene Network (Entome). Curr Issues Mol Biol 2024; 46:2620-2643. [PMID: 38534782 DOI: 10.3390/cimb46030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Systematic evaluation of 80 history and 40 history findings diagnosed 1261 patients with Ehlers-Danlos syndrome (EDS) by direct or online interaction, and 60 key findings were selected for their relation to clinical mechanisms and/or management. Genomic testing results in 566 of these patients supported EDS relevance by their differences from those in 82 developmental disability patients and by their association with general rather than type-specific EDS findings. The 437 nuclear and 79 mitochondrial DNA changes included 71 impacting joint matrix (49 COL5), 39 bone (30 COL1/2/9/11), 22 vessel (12 COL3/8VWF), 43 vessel-heart (17FBN1/11TGFB/BR), 59 muscle (28 COL6/12), 56 neural (16 SCN9A/10A/11A), and 74 autonomic (13 POLG/25porphyria related). These genes were distributed over all chromosomes but the Y, a network analogized to an 'entome' where DNA change disrupts truncal mechanisms (skin constraint, neuromuscular support, joint vessel flexibility) and produces a mirroring cascade of articular and autonomic symptoms. The implied sequences of genes from nodal proteins to hypermobility to branching tissue laxity or dysautonomia symptoms would be ideal for large language/artificial intelligence analyses.
Collapse
Affiliation(s)
- Golder N Wilson
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- KinderGenome Genetics Private Practice, 5347 W Mockingbird, Dallas, TX 75209, USA
| | - Vijay S Tonk
- Director of Medical Genetics and the Cytogenomic Laboratory, Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
Lv R, Duan L, Gao J, Si J, Feng C, Hu J, Zheng X. Bioinformatics-based analysis of the roles of basement membrane-related gene AGRN in systemic lupus erythematosus and pan-cancer development. Front Immunol 2023; 14:1231611. [PMID: 37841281 PMCID: PMC10570813 DOI: 10.3389/fimmu.2023.1231611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease involving many systems and organs, and individuals with SLE exhibit unique cancer risk characteristics. The significance of the basement membrane (BM) in the occurrence and progression of human autoimmune diseases and tumors has been established through research. However, the roles of BM-related genes and their protein expression mechanisms in the pathogenesis of SLE and pan-cancer development has not been elucidated. Methods In this study, we applied bioinformatics methods to perform differential expression analysis of BM-related genes in datasets from SLE patients. We utilized LASSO logistic regression, SVM-RFE, and RandomForest to screen for feature genes and construct a diagnosis model for SLE. In order to attain a comprehensive comprehension of the biological functionalities of the feature genes, we conducted GSEA analysis, ROC analysis, and computed levels of immune cell infiltration. Finally, we sourced pan-cancer expression profiles from the TCGA and GTEx databases and performed pan-cancer analysis. Results We screened six feature genes (AGRN, PHF13, SPOCK2, TGFBI, COL4A3, and COLQ) to construct an SLE diagnostic model. Immune infiltration analysis showed a significant correlation between AGRN and immune cell functions such as parainflammation and type I IFN response. After further gene expression validation, we finally selected AGRN for pan-cancer analysis. The results showed that AGRN's expression level varied according to distinct tumor types and was closely correlated with some tumor patients' prognosis, immune cell infiltration, and other indicators. Discussion In conclusion, BM-related genes play a pivotal role in the pathogenesis of SLE, and AGRN shows immense promise as a target in SLE and the progression of multiple tumors.
Collapse
Affiliation(s)
- Rundong Lv
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Lei Duan
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Jie Gao
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Jigang Si
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Chen Feng
- Department of Pharmacy, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Hu
- Department of Children’s Health, Zibo Central Hospital, Zibo, Shandong, China
| | - Xiulan Zheng
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Masingue M, Cattaneo O, Wolff N, Buon C, Sternberg D, Euchparmakian M, Boex M, Behin A, Mamchaouhi K, Maisonobe T, Nougues MC, Isapof A, Fontaine B, Messéant J, Eymard B, Strochlic L, Bauché S. New mutation in the β1 propeller domain of LRP4 responsible for congenital myasthenic syndrome associated with Cenani-Lenz syndrome. Sci Rep 2023; 13:14054. [PMID: 37640745 PMCID: PMC10462681 DOI: 10.1038/s41598-023-41008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a clinically and genetically heterogeneous group of rare diseases due to mutations in neuromuscular junction (NMJ) protein-coding genes. Until now, many mutations encoding postsynaptic proteins as Agrin, MuSK and LRP4 have been identified as responsible for increasingly complex CMS phenotypes. The majority of mutations identified in LRP4 gene causes bone diseases including CLS and sclerosteosis-2 and rare cases of CMS with mutations in LRP4 gene has been described so far. In the French cohort of CMS patients, we identified a novel LRP4 homozygous missense mutation (c.1820A > G; p.Thy607Cys) within the β1 propeller domain in a patient presenting CMS symptoms, including muscle weakness, fluctuating fatigability and a decrement in compound muscle action potential in spinal accessory nerves, associated with congenital agenesis of the hands and feet and renal malformation. Mechanistic expression studies show a significant decrease of AChR aggregation in cultured patient myotubes, as well as altered in vitro binding of agrin and Wnt11 ligands to the mutated β1 propeller domain of LRP4 explaining the dual phenotype characterized clinically and electoneuromyographically in the patient. These results expand the LRP4 mutations spectrum associated with a previously undescribed clinical association involving impaired neuromuscular transmission and limb deformities and highlighting the critical role of a yet poorly described domain of LRP4 at the NMJ. This study raises the question of the frequency of this rare neuromuscular form and the future diagnosis and management of these cases.
Collapse
Affiliation(s)
- Marion Masingue
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
- Service de Neuromyologie, Centre de Référence Neuromusculaire, APHP, Paris, France
| | - Olivia Cattaneo
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Wolff
- Institut Pasteur, Channel Receptors Unit, UMR CNRS 3571, Université de Paris, Paris, France
| | - Céline Buon
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Damien Sternberg
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
- Service de Biochimie Métabolique, UF Cardiogenetics and Myogenetics, Hôpital de la Pitié-Salpêtrière, APHP, Paris, France
| | - Morgane Euchparmakian
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Myriam Boex
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Anthony Behin
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
- Service de Neuromyologie, Centre de Référence Neuromusculaire, APHP, Paris, France
| | - Kamel Mamchaouhi
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Thierry Maisonobe
- Département de Neurophysiologie Clinique, Centre de Référence des Pathologies Neuromusculaires, Hôpital de la Pitié-Salpêtrière, APHP, Paris, France
| | - Marie-Christine Nougues
- Département de Neuropédiatrie, Centre de Référence des Pathologies Neuromusculaires, Hôpital Trousseau, APHP, Paris, France
| | - Arnaud Isapof
- Département de Neuropédiatrie, Centre de Référence des Pathologies Neuromusculaires, Hôpital Trousseau, APHP, Paris, France
| | - Bertrand Fontaine
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
- Service de Neuromyologie, Centre de Référence Canalopathie, Hôpital de la Pitié-Salpêtrière, APHP, Paris, France
| | - Julien Messéant
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Bruno Eymard
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Laure Strochlic
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Stéphanie Bauché
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
4
|
Uyen Dao TM, Barbeau S, Messéant J, Della-Gaspera B, Bouceba T, Semprez F, Legay C, Dobbertin A. The collagen ColQ binds to LRP4 and regulates the activation of the Muscle-Specific Kinase-LRP4 receptor complex by agrin at the neuromuscular junction. J Biol Chem 2023; 299:104962. [PMID: 37356721 PMCID: PMC10382678 DOI: 10.1016/j.jbc.2023.104962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Collagen Q (ColQ) is a nonfibrillar collagen that plays a crucial role at the vertebrate neuromuscular junction (NMJ) by anchoring acetylcholinesterase to the synapse. ColQ also functions in signaling, as it regulates acetylcholine receptor clustering and synaptic gene expression, in a manner dependent on muscle-specific kinase (MuSK), a key protein in NMJ formation and maintenance. MuSK forms a complex with low-density lipoprotein receptor-related protein 4 (LRP4), its coreceptor for the proteoglycan agrin at the NMJ. Previous studies suggested that ColQ also interacts with MuSK. However, the molecular mechanisms underlying ColQ functions and ColQ-MuSK interaction have not been fully elucidated. Here, we investigated whether ColQ binds directly to MuSK and/or LRP4 and whether it modulates agrin-mediated MuSK-LRP4 activation. Using coimmunoprecipitation, pull-down, plate-binding assays, and surface plasmon resonance, we show that ColQ binds directly to LRP4 but not to MuSK and that ColQ interacts indirectly with MuSK through LRP4. In addition, we show that the LRP4 N-terminal region, which contains the agrin-binding sites, is also crucial for ColQ binding to LRP4. Moreover, ColQ-LRP4 interaction was reduced in the presence of agrin, suggesting that agrin and ColQ compete for binding to LRP4. Strikingly, we reveal ColQ has two opposing effects on agrin-induced MuSK-LRP4 signaling: it constitutively reduces MuSK phosphorylation levels in agrin-stimulated myotubes but concomitantly increases MuSK accumulation at the muscle cell surface. Our results identify LRP4 as a major receptor of ColQ and provide new insights into mechanisms of ColQ signaling and acetylcholinesterase anchoring at the NMJ.
Collapse
Affiliation(s)
- Thi Minh Uyen Dao
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Susie Barbeau
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Julien Messéant
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | | | - Tahar Bouceba
- Sorbonne Université, CNRS, IBPS, Protein Engineering Platform, Paris, France
| | - Fannie Semprez
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Claire Legay
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Alexandre Dobbertin
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
| |
Collapse
|
5
|
Prömer J, Barresi C, Herbst R. From phosphorylation to phenotype - Recent key findings on kinase regulation, downstream signaling and disease surrounding the receptor tyrosine kinase MuSK. Cell Signal 2023; 104:110584. [PMID: 36608736 DOI: 10.1016/j.cellsig.2022.110584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Muscle-specific kinase (MuSK) is the key regulator of neuromuscular junction development. MuSK acts via several distinct pathways and is responsible for pre- and postsynaptic differentiation. MuSK is unique among receptor tyrosine kinases as activation and signaling are particularly tightly regulated. Initiation of kinase activity requires Agrin, a heparan sulphate proteoglycan derived from motor neurons, the low-density lipoprotein receptor-related protein-4 (Lrp4) and the intracellular adaptor protein Dok-7. There is a great knowledge gap between MuSK activation and downstream signaling. Recent studies using omics techniques have addressed this knowledge gap, thereby greatly contributing to a better understanding of MuSK signaling. Impaired MuSK signaling causes severe muscle weakness as described in congenital myasthenic syndromes or myasthenia gravis but the underlying pathophysiology is often unclear. This review focuses on recent advances in deciphering MuSK activation and downstream signaling. We further highlight latest break-throughs in understanding and treatment of MuSK-related disorders and discuss the role of MuSK in non-muscle tissue.
Collapse
Affiliation(s)
- Jakob Prömer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cinzia Barresi
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
COLQ and ARHGAP15 are associated with diverticular disease and are expressed in the colon. J Surg Res 2021; 267:397-403. [PMID: 34225052 DOI: 10.1016/j.jss.2021.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Diverticular disease is a common but poorly understood disease of the gastrointestinal tract. Recent studies have identified several single nucleotide polymorphisms (SNPs) that are associated with diverticular disease. MATERIALS AND METHODS The genotypes of three SNPs (rs4662344 in ARHGAP15, rs7609897 in COLQ, and rs67153654 in FAM155A) were identified by Taqman assay in 204 patients with diverticular disease. Clinical characteristics were obtained from the medical record to study association with genotype. To evaluate gene expression in colon tissue, qPCR was performed on 24 patients with diverticulitis, and COLQ was localized using immunohistochemistry. RESULTS The ARHGAP15 and COLQ SNPs were significantly associated with both diverticular disease and specifically diverticulitis, while the FAM155A was not associated with either. No association was found with clinical disease characteristics. Heterozygous genotypes at the ARHGAP15 SNP was associated with lower ARHGAP15 expression in colon tissues. COLQ protein localized to the myenteric plexus in the colon. CONCLUSIONS This study confirmed association of the ARHGAP15 and COLQ SNPs with diverticular disease in our patients but could not confirm FAM155A SNP association. Neither of these SNPs appeared to associate with more severe disease, but genotype at the ARHGAP15 SNP did impact expression of ARHGAP15 in the colon. Additionally, this study is the first to localize COLQ in the colon. Its presence in the myenteric nervous system suggests COLQ SNP variants may contribute to diverticular disease by altering motility.
Collapse
|
7
|
Leung MR, Zeev-Ben-Mordehai T. Cryo-electron microscopy of cholinesterases, present and future. J Neurochem 2020; 158:1236-1243. [PMID: 33222205 PMCID: PMC8518539 DOI: 10.1111/jnc.15245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) exist in a variety of oligomeric forms, each with defined cellular and subcellular distributions. Although crystal structures of AChE and BChE have been available for many years, structures of the physiologically relevant ChE tetramer were only recently solved by cryo‐electron microscopy (cryo‐EM) single‐particle analysis. Here, we briefly review how these structures contribute to our understanding of cholinesterase oligomerization, highlighting the advantages of using cryo‐EM to resolve structures of protein assemblies that cannot be expressed recombinantly. We argue that the next frontier in cholinesterase structural biology is to image membrane‐anchored ChE oligomers directly in their native environment—the cell.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Takamori M. Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Front Mol Neurosci 2020; 13:86. [PMID: 32547365 PMCID: PMC7272578 DOI: 10.3389/fnmol.2020.00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Myasthenia gravis (MG) is a disease of the postsynaptic neuromuscular junction (NMJ) where nicotinic acetylcholine (ACh) receptors (AChRs) are targeted by autoantibodies. Search for other pathogenic antigens has detected the antibodies against muscle-specific tyrosine kinase (MuSK) and low-density lipoprotein-related protein 4 (Lrp4), both causing pre- and post-synaptic impairments. Agrin is also suspected as a fourth pathogen. In a complex NMJ organization centering on MuSK: (1) the Wnt non-canonical pathway through the Wnt-Lrp4-MuSK cysteine-rich domain (CRD)-Dishevelled (Dvl, scaffold protein) signaling acts to form AChR prepatterning with axonal guidance; (2) the neural agrin-Lrp4-MuSK (Ig1/2 domains) signaling acts to form rapsyn-anchored AChR clusters at the innervated stage of muscle; (3) adaptor protein Dok-7 acts on MuSK activation for AChR clustering from “inside” and also on cytoskeleton to stabilize AChR clusters by the downstream effector Sorbs1/2; (4) the trans-synaptic retrograde signaling contributes to the presynaptic organization via: (i) Wnt-MuSK CRD-Dvl-β catenin-Slit 2 pathway; (ii) Lrp4; and (iii) laminins. The presynaptic Ca2+ homeostasis conditioning ACh release is modified by autoreceptors such as M1-type muscarinic AChR and A2A adenosine receptors. The post-synaptic structure is stabilized by: (i) laminin-network including the muscle-derived agrin; (ii) the extracellular matrix proteins (including collagen Q/perlecan and biglycan which link to MuSK Ig1 domain and CRD); and (iii) the dystrophin-associated glycoprotein complex. The study on MuSK ectodomains (Ig1/2 domains and CRD) recognized by antibodies suggested that the MuSK antibodies were pathologically heterogeneous due to their binding to multiple functional domains. Focussing one of the matrix proteins, biglycan which functions in the manner similar to collagen Q, our antibody assay showed the negative result in MG patients. However, the synaptic stability may be impaired by antibodies against MuSK ectodomains because of the linkage of biglycan with MuSK Ig1 domain and CRD. The pathogenic diversity of MG is discussed based on NMJ signaling molecules.
Collapse
|
9
|
Rivner MH, Pasnoor M, Dimachkie MM, Barohn RJ, Mei L. Muscle-Specific Tyrosine Kinase and Myasthenia Gravis Owing to Other Antibodies. Neurol Clin 2019; 36:293-310. [PMID: 29655451 DOI: 10.1016/j.ncl.2018.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Around 20% of patients with myasthenia gravis are acetylcholine receptor antibody negative; muscle-specific tyrosine kinase antibodies (MuSK) were identified as the cause of myasthenia gravis in 30% to 40% of these cases. Anti MuSK myasthenia gravis is associated with specific clinical phenotypes. One is a bulbar form with fewer ocular symptoms. Others show an isolated head drop or symptoms indistinguishable from acetylcholine receptor-positive myasthenia gravis. These patients usually respond well to immunosuppressive therapy, but not as well to cholinesterase inhibitors. Other antibodies associated with myasthenia gravis, including low-density lipoprotein receptor-related protein 4, are discussed.
Collapse
Affiliation(s)
- Michael H Rivner
- EMG Lab, Augusta University, 1120 15th Street, BP-4390, Augusta, GA 30912, USA.
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, 3599 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66103, USA
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 4017, Kansas City, KS 66160, USA
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, CA-2014, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Heikkinen A, Härönen H, Norman O, Pihlajaniemi T. Collagen XIII and Other ECM Components in the Assembly and Disease of the Neuromuscular Junction. Anat Rec (Hoboken) 2019; 303:1653-1663. [PMID: 30768864 DOI: 10.1002/ar.24092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022]
Abstract
Alongside playing structural roles, the extracellular matrix (ECM) acts as an interaction platform for cellular homeostasis, organ development, and maintenance. The necessity of the ECM is highlighted by the diverse, sometimes very serious diseases that stem from defects in its components. The neuromuscular junction (NMJ) is a large peripheral motor synapse differing from its central counterparts through the ECM included at the synaptic cleft. Such synaptic basal lamina (BL) is specialized to support NMJ establishment, differentiation, maturation, stabilization, and function and diverges in molecular composition from the extrasynaptic ECM. Mutations, toxins, and autoantibodies may compromise NMJ integrity and function, thereby leading to congenital myasthenic syndromes (CMSs), poisoning, and autoimmune diseases, respectively, and all these conditions may involve synaptic ECM molecules. With neurotransmission degraded or blocked, muscle function is impaired or even prevented. At worst, this can be fatal. The article reviews the synaptic BL composition required for assembly and function of the NMJ molecular machinery through the lens of studies primarily with mouse models but also with human patients. In-depth focus is given to collagen XIII, a postsynaptic-membrane-spanning but also shed ECM protein that in recent years has been revealed to be a significant component for the NMJ. Its deficiency in humans causes CMS, and autoantibodies against it have been recognized in autoimmune myasthenia gravis. Mouse models have exposed numerous details that appear to recapitulate human NMJ phenotypes relatively faithfully and thereby can be readily used to generate information necessary for understanding and ultimately treating human diseases. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anne Heikkinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heli Härönen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Oula Norman
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Ohno K, Ohkawara B, Ito M. Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders. Expert Opin Ther Targets 2017; 21:949-958. [PMID: 28825343 DOI: 10.1080/14728222.2017.1369960] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, congenital myasthenic syndromes, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. Except for sarcopenia, all are orphan diseases. In addition, the NMJ signal transduction is impaired by tetanus, botulinum, curare, α-bungarotoxin, conotoxins, organophosphate, sarin, VX, and soman to name a few. Areas covered: This review covers the agrin-LRP4-MuSK signaling pathway, which drives clustering of acetylcholine receptors (AChRs) and ensures efficient signal transduction at the NMJ. We also address diseases caused by autoantibodies against the NMJ molecules and by germline mutations in genes encoding the NMJ molecules. Expert opinion: Representative small compounds to treat the defective NMJ signal transduction are cholinesterase inhibitors, which exert their effects by increasing the amount of acetylcholine at the synaptic space. Another possible therapeutic strategy to enhance the NMJ signal transduction is to increase the number of AChRs, but no currently available drug has this functionality.
Collapse
Affiliation(s)
- Kinji Ohno
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Bisei Ohkawara
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mikako Ito
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
12
|
Takamori M. Synaptic Homeostasis and Its Immunological Disturbance in Neuromuscular Junction Disorders. Int J Mol Sci 2017; 18:ijms18040896. [PMID: 28441759 PMCID: PMC5412475 DOI: 10.3390/ijms18040896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
In the neuromuscular junction, postsynaptic nicotinic acetylcholine receptor (nAChR) clustering, trans-synaptic communication and synaptic stabilization are modulated by the molecular mechanisms underlying synaptic plasticity. The synaptic functions are based presynaptically on the active zone architecture, synaptic vesicle proteins, Ca2+ channels and synaptic vesicle recycling. Postsynaptically, they are based on rapsyn-anchored nAChR clusters, localized sensitivity to ACh, and synaptic stabilization via linkage to the extracellular matrix so as to be precisely opposed to the nerve terminal. Focusing on neural agrin, Wnts, muscle-specific tyrosine kinase (a mediator of agrin and Wnts signalings and regulator of trans-synaptic communication), low-density lipoprotein receptor-related protein 4 (the receptor of agrin and Wnts and participant in retrograde signaling), laminin-network (including muscle-derived agrin), extracellular matrix proteins (participating in the synaptic stabilization) and presynaptic receptors (including muscarinic and adenosine receptors), we review the functional structures of the synapse by making reference to immunological pathogenecities in postsynaptic disease, myasthenia gravis. The synapse-related proteins including cortactin, coronin-6, caveolin-3, doublecortin, R-spondin 2, amyloid precursor family proteins, glia cell-derived neurotrophic factor and neurexins are also discussed in terms of their possible contribution to efficient synaptic transmission at the neuromuscular junction.
Collapse
Affiliation(s)
- Masaharu Takamori
- Neurological Center, Kanazawa-Nishi Hospital, Kanazawa, Ishikawa 920-0025, Japan.
| |
Collapse
|
13
|
Härönen H, Zainul Z, Tu H, Naumenko N, Sormunen R, Miinalainen I, Shakirzyanova A, Oikarainen T, Abdullin A, Martin P, Santoleri S, Koistinaho J, Silman I, Giniatullin R, Fox MA, Heikkinen A, Pihlajaniemi T. Collagen XIII secures pre- and postsynaptic integrity of the neuromuscular synapse. Hum Mol Genet 2017; 26:2076-2090. [DOI: 10.1093/hmg/ddx101] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
|
14
|
Ohno K, Otsuka K, Ito M. Roles of collagen Q in MuSK antibody-positive myasthenia gravis. Chem Biol Interact 2016; 259:266-270. [PMID: 27119269 DOI: 10.1016/j.cbi.2016.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/25/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
The low-density lipoprotein receptor-related protein 4 (LRP4) and the muscle-specific receptor tyrosine kinase (MuSK) form a tetrameric protein complex on the postsynaptic membrane at the neuromuscular junction (NMJ). Binding of agrin to LRP4 triggers phosphorylation of MuSK. Activated MuSK drives clustering of acetylcholine receptor (AChR). Wnt ligands also directly bind to MuSK to induce AChR clustering. MuSK anchors the acetylcholinesterase (AChE)/collagen Q (ColQ) complex to the synaptic basal lamina. In addition, an extracellular proteoglycan, biglycan, binds to MuSK. Anti-MuSK autoantibodies (MuSK-IgG) are observed in 5-15% of autoimmune myasthenia gravis (MG) patients. MuSK-IgG blocks both ColQ-MuSK and LRP4-MuSK interactions. MuSK-IgG, LRP4, ColQ, and biglycan bind to the immunoglobulin-like domains 1 and 4 of MuSK. Lack of the effects of cholinesterase inhibitors in MuSK-MG patients is likely due to hindrance of ColQ-MuSK interaction by MuSK-IgG and subsequent deficiency of AChE observed in model mice, which, however, has not been proven in MuSK-MG patients. As ColQ enhances expression of membrane-bound MuSK, inhibition of ColQ-MuSK interaction by MuSK-IgG may account for lack of AChR clusters in MuSK-MG. We thus made passive transfer models using Colq+/+ and Colq-/- mice to dissect the effect of ColQ on AChR clustering in MuSK-MG. We found that MuSK-IgG-mediated suppression of LRP4-MuSK interaction, not of ColQ-MuSK interaction, caused defective AChR clustering. We also unexpectedly observed that both MuSK-IgG and ColQ suppressed agrin/LRP4/MuSK signaling in dose-dependent manners. Quantitative comparison revealed that MuSK-IgG blocked agrin-LRP4-MuSK signaling more than ColQ. We propose that attenuation of AChR clustering in MuSK-MG is due to hindrance of LRP4-MuSK interaction in the presence of agrin by MuSK-IgG.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya 466-8550, Japan.
| | - Kenji Otsuka
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya 466-8550, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya 466-8550, Japan
| |
Collapse
|
15
|
Collagen Q and anti-MuSK autoantibody competitively suppress agrin/LRP4/MuSK signaling. Sci Rep 2015; 5:13928. [PMID: 26355076 PMCID: PMC4564764 DOI: 10.1038/srep13928] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/11/2015] [Indexed: 11/25/2022] Open
Abstract
MuSK antibody-positive myasthenia gravis (MuSK-MG) accounts for 5 to 15% of autoimmune MG. MuSK and LRP4 are coreceptors for agrin in the signaling pathway that causes clustering of acetylcholine receptor (AChR). MuSK also anchors the acetylcholinesterase (AChE)/collagen Q (ColQ) complex to the synaptic basal lamina. We previously reported that anti-MuSK antibodies (MuSK-IgG) block binding of ColQ to MuSK and cause partial endplate AChE deficiency in mice. We here analyzed the physiological significance of binding of ColQ to MuSK and block of this binding by MuSK-IgG. In vitro plate-binding assay showed that MuSK-IgG blocked MuSK-LRP4 interaction in the presence of agrin. Passive transfer of MuSK-IgG to Colq-knockout mice attenuated AChR clustering, indicating that lack of ColQ is not the key event causing defective clustering of AChR in MuSK-MG. In three MuSK-MG patients, the MuSK antibodies recognized the first and fourth immunoglobulin-like domains (Ig1 and Ig4) of MuSK. In two other MuSK-MG patients, they recognized only the Ig4 domain. LRP4 and ColQ also bound to the Ig1 and Ig4 domains of MuSK. Unexpectedly, the AChE/ColQ complex blocked MuSK-LRP4 interaction and suppressed agrin/LRP4/MuSK signaling. Quantitative analysis showed that MuSK-IgG suppressed agrin/LRP4/MuSK signaling to a greater extent than ColQ.
Collapse
|
16
|
Evoli A, Iorio R. Characteristics of myasthenia gravis with antibodies to muscle-specific kinase and low-density lipoprotein-related receptor protein 4. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/cen3.12173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Amelia Evoli
- Institute of Neurology; Catholic University; Roma Italy
| | | |
Collapse
|
17
|
Tracking the Origin and Divergence of Cholinesterases and Neuroligins: The Evolution of Synaptic Proteins. J Mol Neurosci 2014; 53:362-9. [DOI: 10.1007/s12031-013-0194-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
|
18
|
Montenegro MF, Nieto-Cerón S, Cabezas-Herrera J, Muñoz-Delgado E, Campoy FJ, Vidal CJ. Most acetylcholinesterase activity of non-nervous tissues and cells arises from the AChE-H transcript. J Mol Neurosci 2013; 53:429-35. [PMID: 24242952 DOI: 10.1007/s12031-013-0172-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/04/2013] [Indexed: 12/26/2022]
Abstract
While the functional implications of AChE-T, PRiMA and ColQ have been firmly established, those of glypiated AChE remain uncertain. Insights into the physiological meaning of glycosylphosphatidylinositol (GPI)-linked AChE-H were gained by comparing nervous and non-nervous tissues for the amount of AChE mRNA variants they contained. PCR showed that AChE-T mRNA prevailed in the mouse brain, spinal cord, sciatic nerve and muscle, and AChE-H mRNA in the bone marrow and thymus, as well as in the human gut. The similar levels of AChE-T and AChE-H mRNAs in mouse liver and human kidney contrasted with the almost exclusive presence of catalytically active AChE-H in both organs. The absence of PRiMA mRNA in liver suggested that the tetramers made of AChE-T fail to bind to the cell membrane and are secreted due to the lack of PRiMA in non-nervous organs. In contrast, glypiated AChE-H is largely and lastingly bound to the cell membrane. Thus, non-synaptic glypiated AChE-H seems to be the counterpart of synaptic PRiMA-linked AChE-T, the former designed for clearing ACh waves, the latter for confronting ACh bursts, and both for helping to protect cells against the harmful effects of durable nicotinic and muscarinic activation.
Collapse
Affiliation(s)
- María Fernanda Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Koneczny I, Cossins J, Vincent A. The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. J Anat 2013; 224:29-35. [PMID: 23458718 DOI: 10.1111/joa.12034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 11/28/2022] Open
Abstract
MuSK myasthenia gravis is a rare, severe autoimmune disease of the neuromuscular junction, only identified in 2001, with unclear pathogenic mechanisms. In this review we describe the clinical aspects that distinguish MuSK MG from AChR MG, review what is known about the role of MuSK in the development and function of the neuromuscular junction, and discuss the data that address how the antibodies to MuSK lead to neuromuscular transmission failure.
Collapse
Affiliation(s)
- Inga Koneczny
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|