1
|
Pan H, Shi P, Zhong S, Ding X, Bao S, Zhao S, Chen J, Dai C, Zhang D, Qiu X, Liao B, Huang Z. Genome-wide identification and expression analysis of the ADH gene family in Artemisia annua L. under UV-B stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1533225. [PMID: 40177011 PMCID: PMC11961895 DOI: 10.3389/fpls.2025.1533225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025]
Abstract
ADHs are key genes that catalyze the interconversion between alcohols and aldehydes, which play crucial roles in plant adaptation to a range of abiotic stresses. However, the characterization and evolutionary pathways of ADH genes in the antimalarial plant Artemisia annua are still unclear. This study identified 49 ADH genes in A. annua and conducted a detailed analysis of their structural features, conserved motifs, and duplication types, revealing that tandem and dispersed duplications are the primary mechanisms of gene expansion. Evolutionary analysis of ADH genes between A. annua (AanADH) and A. argyi (AarADH) revealed dynamic changes, with 35 genes identified deriving from their most recent common ancestor in both species. ADH1, crucial for artemisinin production, had two copies in both species, expanding via dispersed duplication in A. annua but whole-genome duplication in A. argyi. CREs and WGCNA analysis suggested that AanADH genes may be regulated by UV-B stress. Following short-term UV-B treatment, 16 DEGs were identified, including ADH1 (AanADH6 and AanADH7), and these genes were significantly downregulated after two hours treatment (UV2h) and upregulated after four hours treatment (UV4h). The expression changes of these genes were further confirmed by GO enrichment analysis and qRT-PCR experiments. Overall, this study comprehensively characterized the ADH gene family in A. annua and systematically identified AanADH genes that were responsive to UV-B stress, providing a foundation for further research on their roles in abiotic stress responses.
Collapse
Affiliation(s)
- Hengyu Pan
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiqi Shi
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shan Zhong
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Xiaoxia Ding
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengye Bao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyu Zhao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieting Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunyan Dai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danchun Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baosheng Liao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Zhang L, Sun Z, Xu G, Ni Y. Classification and functional origins of stereocomplementary alcohol dehydrogenases for asymmetric synthesis of chiral secondary alcohols: A review. Int J Biol Macromol 2024; 270:132238. [PMID: 38729463 DOI: 10.1016/j.ijbiomac.2024.132238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Alcohol dehydrogenases (ADHs) mediated biocatalytic asymmetric reduction of ketones have been widely applied in the synthesis of optically active secondary alcohols with highly reactive hydroxyl groups ligated to the stereogenic carbon and divided into (R)- and (S)-configurations. Stereocomplementary ADHs could be applied in the synthesis of both enantiomers and are increasingly accepted as the "first of choice" in green chemistry due to the high atomic economy, low environmental factor, 100 % theoretical yield, and high environmentally friendliness. Due to the equal importance of complementary alcohols, development of stereocomplementary ADHs draws increasing attention. This review is committed to summarize recent advance in discovery of naturally evolved and tailor-made stereocomplementary ADHs, unveil the molecular mechanism of stereoselective catalysis in views of classification and functional basis, and provide guidance for further engineering the stereoselectivity of ADHs for the industrial biosynthesis of chiral secondary alcohol of industrial relevance.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zewen Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
3
|
Ma X, Liu Z, Zeng X, Li Z, Luo R, Liu R, Wang C, Gu Y. Genome-Wide Identification and Characterization of the Medium-Chain Dehydrogenase/Reductase Superfamily of Trichosporon asahii and Its Involvement in the Regulation of Fluconazole Resistance. J Fungi (Basel) 2024; 10:123. [PMID: 38392795 PMCID: PMC10889790 DOI: 10.3390/jof10020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
The medium-chain dehydrogenase/reductase (MDR) superfamily contains many members that are widely present in organisms and play important roles in growth, metabolism, and stress resistance but have not been studied in Trichosporon asahii. In this study, bioinformatics and RNA sequencing methods were used to analyze the MDR superfamily of T. asahii and its regulatory effect on fluconazole resistance. A phylogenetic tree was constructed using Saccharomyces cerevisiae, Candida albicans, Cryptococcus neoformans, and T. asahii, and 73 MDRs were identified, all of which contained NADPH-binding motifs. T. asahii contained 20 MDRs that were unevenly distributed across six chromosomes. T. asahii MDRs (TaMDRs) had similar 3D structures but varied greatly in their genetic evolution at different phylum levels. RNA-seq and gene expression analyses revealed that the fluconazole-resistant T. asahii strain upregulates xylitol dehydrogenase, and downregulated alcohol dehydrogenase and sorbitol dehydrogenase concluded that the fluconazole-resistant T. asahii strain was less selective toward carbon sources and had higher adaptability to the environment. Overall, our study contributes to our understanding of TaMDRs, providing a basis for further analysis of the genes associated with drug resistance in T. asahii.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangwen Zeng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiguo Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rongyan Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruiguo Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu 611800, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Ghatak A, Shanbhag AP, Datta S. Reducing the vicissitudes of heterologous prochiral substrate catalysis by alcohol dehydrogenases through machine learning algorithms. Biochem Biophys Res Commun 2024; 691:149298. [PMID: 38011820 DOI: 10.1016/j.bbrc.2023.149298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Alcohol dehydrogenases (ADHs) are popular catalysts for synthesizing chiral synthons a vital step for active pharmaceutical intermediate (API) production. They are grouped into three superfamilies namely, medium-chain (MDRs), short-chain dehydrogenase/reductases (SDRs), and iron-containing alcohol dehydrogenases. The former two are used extensively for producing various chiral synthons. Many studies screen multiple enzymes or engineer a specific enzyme for catalyzing a substrate of interest. These processes are resource-intensive and intricate. The current study attempts to decipher the ability to match different ADHs with their ideal substrates using machine learning algorithms. We explore the catalysis of 284 antibacterial ketone intermediates, against MDRs and SDRs to demonstrate a unique pattern of activity. To facilitate machine learning we curated a dataset comprising 33 features, encompassing 4 descriptors for each compound. Subsequently, an ensemble of machine learning techniques viz. Partial Least Squares (PLS) regression, k-Nearest Neighbors (kNN) regression, and Support Vector Machine (SVM) regression, was harnessed. Moreover, the assimilation of Principal Component Analysis (PCA) augmented precision and accuracy, thereby refining and demarcating diverse compound classes. As such, this classification is useful for discerning substrates amenable to diverse alcohol dehydrogenases, thereby mitigating the reliance on high-throughput screening or engineering in identifying the optimal enzyme for specific substrate.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India; Biomoneta Research Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK, Bangalore, 560065, India
| | - Anirudh P Shanbhag
- Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK, Bangalore, 560065, India.
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK, Bangalore, 560065, India
| |
Collapse
|
5
|
Wang R, Du C, Gu G, Zhang B, Lin X, Chen C, Li T, Chen R, Xie X. Genome-wide identification and expression analysis of the ADH gene family under diverse stresses in tobacco (Nicotiana tabacum L.). BMC Genomics 2024; 25:13. [PMID: 38166535 PMCID: PMC10759372 DOI: 10.1186/s12864-023-09813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/17/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Alcohol dehydrogenases (ADHs) are the crucial enzymes that can convert ethanol into acetaldehyde. In tobacco, members of ADH gene family are involved in various stresses tolerance reactions, lipid metabolism and pathways related to plant development. It will be of great application significance to analyze the ADH gene family and expression profile under various stresses in tobacco. RESULTS A total of 53 ADH genes were identified in tobacco (Nicotiana tabacum L.) genome and were grouped into 6 subfamilies based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were highly conserved among the NtADH genes, especially the members within the same subfamily. A total of 5 gene pairs of tandem duplication, and 3 gene pairs of segmental duplication were identified based on the analysis of gene duplication events. Cis-regulatory elements of the NtADH promoters participated in cell development, plant hormones, environmental stress, and light responsiveness. The analysis of expression profile showed that NtADH genes were widely expressed in topping stress and leaf senescence. However, the expression patterns of different members appeared to be diverse. The qRT-PCR analysis of 13 NtADH genes displayed their differential expression pattern in response to the bacterial pathogen Ralstonia solanacearum L. INFECTION Metabolomics analysis revealed that NtADH genes were primarily associated with carbohydrate metabolism, and moreover, four NtADH genes (NtADH20/24/48/51) were notably involved in the pathway of alpha-linolenic acid metabolism which related to the up-regulation of 9-hydroxy-12-oxo-10(E), 15(Z)-octadecadienoic acid and 9-hydroxy-12-oxo-15(Z)-octadecenoic acid. CONCLUSION The genome-wide identification, evolutionary analysis, expression profiling, and exploration of related metabolites and metabolic pathways associated with NtADH genes have yielded valuable insights into the roles of these genes in response to various stresses. Our results could provide a basis for functional analysis of NtADH gene family under stressful conditions.
Collapse
Affiliation(s)
- Ruiqi Wang
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Chaofan Du
- Longyan Tobacco Company, Longyan, 364000, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, 350003, China
| | - Binghui Zhang
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, 350003, China
| | - Xiaolu Lin
- Longyan Tobacco Company, Longyan, 364000, China
| | - Chengliang Chen
- Jianning Branch of Sanming Tobacco Company, Sanming, 354500, China
| | - Tong Li
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Rui Chen
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Hu X, Liu W, Yan Y, Deng H, Cai Y. Tropinone reductase: A comprehensive review on its role as the key enzyme in tropane alkaloids biosynthesis. Int J Biol Macromol 2023; 253:127377. [PMID: 37839598 DOI: 10.1016/j.ijbiomac.2023.127377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
TAs, including hyoscyamine and scopolamine, were used to treat neuromuscular disorders ranging from nerve agent poisoning to Parkinson's disease. Tropinone reductase I (TR-I; EC 1.1.1.206) catalyzed the conversion of tropinone into tropine in the biosynthesis of TAs, directing the metabolic flow towards hyoscyamine and scopolamine. Tropinone reductase II (TR-II; EC 1.1.1.236) was responsible for the conversion of tropinone into pseudotropine, diverting the metabolic flux towards calystegine A3. The regulation of metabolite flow through both branches of the TAs pathway seemed to be influenced by the enzymatic activity of both enzymes and their accessibility to the precursor tropinone. The significant interest in the utilization of metabolic engineering for the efficient production of TAs has highlighted the importance of TRs as crucial enzymes that govern both the direction of metabolic flow and the yield of products. This review discussed recent advances for the TRs sources, properties, protein structure and biocatalytic mechanisms, and a detailed overview of its crucial role in the metabolism and synthesis of TAs was summarized. Furthermore, we conducted a detailed investigation into the evolutionary origins of these two TRs. A prospective analysis of potential challenges and applications of TRs was presented.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Zhang XJ, Yang F, Chen KL, Fang WM, Liu ZQ, Zheng YG. Efficient biosynthesis of Vibegron intermediate using a novel carbonyl reductase based on molecular modification of hydrogen bonding network regulation. Bioorg Chem 2023; 140:106788. [PMID: 37598433 DOI: 10.1016/j.bioorg.2023.106788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Vibegron is a novel, potent, highly selective β3-adrenergic receptor agonist for the treatment of overactive bladder with higher therapeutic capacity and lower side effects. Methyl(2S,3R)-2-((tert-butoxycarbonyl)amino)-3-hydroxy-3-phenylpropanoate ((2S,3R)-aminohydroxy ester) is a key chiral intermediate for the synthesis of Vibegron. A novel carbonyl reductase from Exiguobacterium sp. s126 (EaSDR6) was isolated using data mining technology from GenBank database with preferable catalytic activity. Hydrogen bond network regulation was performed using site-directed saturation mutagenesis and combination mutagenesis. The mutant EaSDR6A138L/S193A was obtained with the activity improvement by 4.58 folds compared with the wild type EaSDR6. The Km of EaSDR6A138L/S193A was decreased from 1.57 mM to 0.67 mM, kcat was increased by 2.17 folds, and the overall catalytic efficiency kcat/Km was increased by 5.07 folds. The organic-aqueous biphasic bioreaction system for the asymmetric synthesis of (2S,3R)-aminohydroxy ester was constructed for the first time. Under the substrate concentration of 150 g/L, the yield of (2S,3R)-aminohydroxy ester was > 99.99%, the e.e. was > 99.99%, and the spatiotemporal yield was 1.55 g/(L·h·g DCW) after 12 h reaction. While the substrate concentration was increased to 200 g/L and the reaction lasted for 36 h, the yield of (2S,3R)-aminohydroxy ester was > 99.99%, the e.e. was > 99.99% and the spatiotemporal yield was 1.05 g/(L·h·g DCW). The substrate concentration and spatiotemporal yield were higher than ever reported.
Collapse
Affiliation(s)
- Xiao-Jian Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fei Yang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Kai-Li Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wei-Mei Fang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
8
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
9
|
Shen C, Yuan J, Ou X, Ren X, Li X. Genome-wide identification of alcohol dehydrogenase (ADH) gene family under waterlogging stress in wheat ( Triticum aestivum). PeerJ 2021; 9:e11861. [PMID: 34386306 PMCID: PMC8312495 DOI: 10.7717/peerj.11861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background Alcohol dehydrogenase (ADH) plays an important role in plant survival under anaerobic conditions. Although some research about ADH in many plants have been carried out, the bioinformatics analysis of the ADH gene family from Triticum aestivum and their response to abiotic stress is unclear. Methods A total of 22 ADH genes were identified from the wheat genome, and these genes could be divided into two subfamilies (subfamily I and subfamily II). All TaADH genes belonged to the Medium-chain ADH subfamily. Sequence alignment analysis showed that all TaADH proteins contained a conservative GroES-like domain and Zinc-binding domain. A total of 64 duplicated gene pairs were found, and the Ka/Ks value of these gene pairs was less than 1, which indicated that these genes were relatively conservative and did not change greatly in the process of duplication. Results The organizational analysis showed that nine TaADH genes were highly expressed in all organs, and the rest of TaADH genes had tissue specificity. Cis-acting element analysis showed that almost all of the TaADH genes contained an anaerobic response element. The expression levels of ADH gene in waterlogging tolerant and waterlogging sensitive wheat seeds were analyzed by quantitative real-time PCR (qRT-PCR). This showed that some key ADH genes were significantly responsive to waterlogging stress at the seed germination stage, and the response of waterlogging tolerant and waterlogging sensitive wheat seeds to waterlogging stress was regulated by different ADH genes. The results may be helpful to further study the function of TaADH genes and to determine the candidate gene for wheat stress resistance breeding.
Collapse
Affiliation(s)
- Changwei Shen
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiujuan Ren
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xinhua Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
10
|
Lee S, Park YS. Effect of water-soluble propolis administration on the ethanol-induced hangover in rats. Food Sci Biotechnol 2021; 30:455-463. [PMID: 33868756 DOI: 10.1007/s10068-020-00869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022] Open
Abstract
Water soluble propolis was prepared using β-cyclodextrin, and its effect on an ethanol-induced hangover was examined in Sprague-Dawley (SD) rats fed with ethanol. When SD rats were administrated with propolis 30 min after ethanol feeding, ethanol content in the rat serum decreased 2.1 times 1 h after ethanol feeding. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in rat liver increased 3.0 and 4.4 times, respectively, 1 h after ethanol feeding and administration of propolis 30 min after ethanol feeding. There were no differences in the expression of ADH and ALDH genes regardless of propolis administration. These results indicated that a decrease in ethanol content in the serum was not due to an increase in the expression of ADH or ALDH genes but rather, an increase in activities of ADH and ALDH.
Collapse
Affiliation(s)
- Sulhee Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea.,Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
11
|
Chiang SH, Yang KM, Lai YC, Chen CW. Evaluation of the in vitro biological activities of Banana flower and bract extracts and their bioactive compounds. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1856134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Shu-Hua Chiang
- Department of Health and Creative Vegetarian Science, FoGuang University, Yilan, Taiwan
| | - Kia-Min Yang
- Department of Hospitality Management, Mingdao University, ChangHua, Taiwan
| | - Ying-Chiao Lai
- Department of Health Food, Chung Chou, University of Science and Technology, Changhua, Taiwan
| | - Chih-Wei Chen
- Bachelor Degree Program in Environment and Food Safety Laboratory Science, Chang Jung Christian University, Tainan, Taiwan
| |
Collapse
|
12
|
Zhou J, Xu G, Ni Y. Stereochemistry in Asymmetric Reduction of Bulky–Bulky Ketones by Alcohol Dehydrogenases. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02646] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jieyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| |
Collapse
|
13
|
Zeng W, Qiao X, Li Q, Liu C, Wu J, Yin H, Zhang S. Genome-wide identification and comparative analysis of the ADH gene family in Chinese white pear (Pyrus bretschneideri) and other Rosaceae species. Genomics 2020; 112:3484-3496. [PMID: 32585175 DOI: 10.1016/j.ygeno.2020.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 01/26/2023]
Abstract
Alcohol dehydrogenase (ADH) is essential to the formation of aromatic compounds in fruits. However, the evolutionary history and characteristics of ADH gene expression remain largely unclear in Rosaceae fruit species. In this study, 464 ADH genes were identified in eight Rosaceae fruit species, 68 of the genes were from pear and which were classified into four subgroups. Frequent single gene duplication events were found to have contributed to the formation of ADH gene clusters and the expansion of the ADH gene family in these eight Rosaceae species. Purifying selection was the major force in ADH gene evolution. The younger genes derived from tandem and proximal duplications had evolved faster than those derived from other types of duplication. RNA-Seq and qRT-PCR analysis revealed that the expression levels of three ADH genes were closely correlated with the content of aromatic compounds detected during fruit development.
Collapse
Affiliation(s)
- Weiwei Zeng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunxin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jun Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hao Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Dithugoe CD, van Marwijk J, Smit MS, Opperman DJ. An Alcohol Dehydrogenase from the Short-Chain Dehydrogenase/Reductase Family of Enzymes for the Lactonization of Hexane-1,6-diol. Chembiochem 2018; 20:96-102. [PMID: 30252998 DOI: 10.1002/cbic.201800533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 01/20/2023]
Abstract
Biocatalytic production of lactones, and in particular ϵ-caprolactone (CL), have gained increasing interest as a greener route to polymer building blocks, especially through the use of Baeyer-Villiger monooxygenases (BVMOs). Despite several advances in the field, BVMOs, however, still suffer several practical limitations. Alcohol dehydrogenase (ADH)-mediated lactonization of diols in turn has received far less attention and very few enzymes have been identified for the conversion of diols to lactones, with horse-liver ADH (HLADH) remaining the catalyst of choice. Screening of a diverse panel of ADHs, AaSDR-1, a member of the short-chain dehydrogenase/reductase family, was found to produce ϵ-caprolactone from hexane-1,6-diol. Moreover, cofactor regeneration by an NADH oxidase eliminated the requirement of co-substrates, yielding water as the sole by-product. Despite lower turnover frequencies as compared to HLADH, higher selectivity was found for the production of CL, with HLADH forming significant amounts of 6-hydroxyhexanoic acid and adipic acid through aldehyde dehydrogenation/oxidation of the gem-diol intermediates. Also, CL yield were shown to be dependent on buffer choice, as structural elucidation of a Tris adduct confirmed the buffer amine to react with aliphatic aldehydes forming a Schiff-base intermediate which through further ADH oxidation, forms a tricyclic acetal product.
Collapse
Affiliation(s)
- Choaro D Dithugoe
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Jacqueline van Marwijk
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Martha S Smit
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Diederik J Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| |
Collapse
|
15
|
Yi SY, Ku SS, Sim HJ, Kim SK, Park JH, Lyu JI, So EJ, Choi SY, Kim J, Ahn MS, Kim SW, Park H, Jeong WJ, Lim YP, Min SR, Liu JR. An Alcohol Dehydrogenase Gene from Synechocystis sp. Confers Salt Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2017; 8:1965. [PMID: 29204151 PMCID: PMC5698875 DOI: 10.3389/fpls.2017.01965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/31/2017] [Indexed: 06/01/2023]
Abstract
Synechocystis salt-responsive gene 1 (sysr1) was engineered for expression in higher plants, and gene construction was stably incorporated into tobacco plants. We investigated the role of Sysr1 [a member of the alcohol dehydrogenase (ADH) superfamily] by examining the salt tolerance of sysr1-overexpressing (sysr1-OX) tobacco plants using quantitative real-time polymerase chain reactions, gas chromatography-mass spectrometry, and bioassays. The sysr1-OX plants exhibited considerably increased ADH activity and tolerance to salt stress conditions. Additionally, the expression levels of several stress-responsive genes were upregulated. Moreover, airborne signals from salt-stressed sysr1-OX plants triggered salinity tolerance in neighboring wild-type (WT) plants. Therefore, Sysr1 enhanced the interconversion of aldehydes to alcohols, and this occurrence might affect the quality of green leaf volatiles (GLVs) in sysr1-OX plants. Actually, the Z-3-hexenol level was approximately twofold higher in sysr1-OX plants than in WT plants within 1-2 h of wounding. Furthermore, analyses of WT plants treated with vaporized GLVs indicated that Z-3-hexenol was a stronger inducer of stress-related gene expression and salt tolerance than E-2-hexenal. The results of the study suggested that increased C6 alcohol (Z-3-hexenol) induced the expression of resistance genes, thereby enhancing salt tolerance of transgenic plants. Our results revealed a role for ADH in salinity stress responses, and the results provided a genetic engineering strategy that could improve the salt tolerance of crops.
Collapse
Affiliation(s)
- So Young Yi
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
| | - Seong Sub Ku
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
| | - Sang-Kyu Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
| | - Ji Hyun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae Il Lyu
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Eun Jin So
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - So Yeon Choi
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jonghyun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Myung Suk Ahn
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Suk Weon Kim
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hyunwoo Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Won Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Sung Ran Min
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jang Ryol Liu
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| |
Collapse
|
16
|
Bird AD, Greatorex S, Reser D, Lavery GG, Cole TJ. Hydroxysteroid dehydrogenase HSD1L is localised to the pituitary-gonadal axis of primates. Endocr Connect 2017; 6:489-499. [PMID: 28871060 PMCID: PMC5592779 DOI: 10.1530/ec-17-0119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023]
Abstract
Steroid hormones play clinically important and specific regulatory roles in the development, growth, metabolism, reproduction and brain function in human. The type 1 and 2 11-beta hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 2) have key roles in the pre-receptor modification of glucocorticoids allowing aldosterone regulation of blood pressure, control of systemic fluid and electrolyte homeostasis and modulation of integrated metabolism and brain function. Although the activity and function of 11β-HSDs is thought to be understood, there exists an open reading frame for a distinct 11βHSD-like gene; HSD11B1L, which is present in human, non-human primate, sheep, pig and many other higher organisms, whereas an orthologue is absent in the genomes of mouse, rat and rabbit. We have now characterised this novel HSD11B1L gene as encoded by 9 exons and analysis of EST library transcripts indicated the use of two alternate ATG start sites in exons 2 and 3, and alternate splicing in exon 9. Relatively strong HSD11B1L gene expression was detected in human, non-human primate and sheep tissue samples from the brain, ovary and testis. Analysis in non-human primates and sheep by immunohistochemistry localised HSD11B1L protein to the cytoplasm of ovarian granulosa cells, testis Leydig cells, and gonadatroph cells in the anterior pituitary. Intracellular localisation analysis in transfected human HEK293 cells showed HSD1L protein within the endoplasmic reticulum and sequence analysis suggests that similar to 11βHSD1 it is membrane bound. The endogenous substrate of this third HSD enzyme remains elusive with localisation and expression data suggesting a reproductive hormone as a likely substrate.
Collapse
Affiliation(s)
- A Daniel Bird
- Department of Biochemistry and Molecular BiologyMonash University, Melbourne, Victoria, Australia
| | - Spencer Greatorex
- Department of Biochemistry and Molecular BiologyMonash University, Melbourne, Victoria, Australia
| | - David Reser
- Department of PhysiologyMonash University, Melbourne, Victoria, Australia
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research2nd Floor IBR Tower, University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Timothy J Cole
- Department of Biochemistry and Molecular BiologyMonash University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Abstract
Close to 80 years of research have brought MDR alcohol dehydrogenases (ADHs) from unknown molecular concepts to molecules known in exact detail regarding structural, functional and evolutionary properties. They can be traced backwards in at least six stages of development, to essentially the origin of cellular life, and have been monitored in a long series of biannual meetings on "Carbonyl Metabolism". In between each of these latest meetings, a roughly three-fold increase in known totals of MDR databank entries has been apparent, bringing the total now of known MDR-ADH entries to approaching half a million forms.
Collapse
Affiliation(s)
- Hans Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden.
| |
Collapse
|
18
|
Adhikari BR, Schraft H, Chen A. A high-performance enzyme entrapment platform facilitated by a cationic polymer for the efficient electrochemical sensing of ethanol. Analyst 2017; 142:2595-2602. [DOI: 10.1039/c7an00594f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient enzyme entrapment approach using a cationic polymer has been demonstrated for the development of a high-performance ethanol biosensor.
Collapse
Affiliation(s)
| | - Heidi Schraft
- Department of Biology
- Lakehead University
- Thunder Bay
- Canada
| | - Aicheng Chen
- Department of Chemistry
- Lakehead University
- Thunder Bay
- Canada
| |
Collapse
|
19
|
Bhuiya S, Haque L, Pradhan AB, Das S. Inhibitory effects of the dietary flavonoid quercetin on the enzyme activity of zinc(II)-dependent yeast alcohol dehydrogenase: Spectroscopic and molecular docking studies. Int J Biol Macromol 2016; 95:177-184. [PMID: 27864057 DOI: 10.1016/j.ijbiomac.2016.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/01/2022]
Abstract
A multispectroscopic exploration was employed to investigate the interaction between the metallo-enzyme alcohol dehydrogenase (ADH) from yeast with bioflavonoid quercetin (QTN). Here, we have characterized the complex formation between QTN and Zn2+ in aqueous solution and then examined the effect of such complex formation on the enzymatic activity of a zinc(II)-dependent enzyme alcohol dehydrogenase from yeast. We have observed an inhibition of enzymatic activity of ADH in presence of QTN. Enzyme inhibition kinetic experiments revealed QTN as a non-competitive inhibitor of yeast ADH. Perturbation of Circular dichroic (CD) spectrum of ADH in presence of QTN is observed due to the structural changes of ADH on complexation with the above flavonoid. Our results indicate a conformational change of ADH due to removal of Zn2+ present in the enzyme by QTN. This was further established by molecular modeling study which shows that the flavonoid binds to the Zn2+ ion which maintains the tertiary structure of the metallo-enzyme. So, QTN abstracts only half of the Zn2+ ions present in the enzyme i.e. one Zn2+ ion per monomer. From the present study, the structural alteration and loss of enzymatic activity of ADH are attributed to the complex formation between QTN and Zn2+.
Collapse
Affiliation(s)
- Sutanwi Bhuiya
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Lucy Haque
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Ankur Bikash Pradhan
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Suman Das
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
20
|
Kasprzak J, Rauter M, Riechen J, Worch S, Baronian K, Bode R, Schauer F, Kunze G. Characterization of an Arxula adeninivorans alcohol dehydrogenase involved in the metabolism of ethanol and 1-butanol. FEMS Yeast Res 2016; 16:fow018. [PMID: 26912215 DOI: 10.1093/femsyr/fow018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 01/25/2023] Open
Abstract
In this study, alcohol dehydrogenase 1 from Arxula adeninivorans (Aadh1p) was identified and characterized. Aadh1p showed activity with short and medium chain length primary alcohols in the forward reaction and their aldehydes in the reverse reaction. Aadh1p has 64% identity with Saccharomyces cerevisiae Adh1p, is localized in the cytoplasm and uses NAD(+) as cofactor. Gene expression analysis showed a low level increase in AADH1 gene expression with ethanol, pyruvate or xylose as the carbon source. Deletion of the AADH1 gene affects growth of the cells with 1-butanol, ethanol and glucose as the carbon source, and a strain which overexpressed the AADH1 gene metabolized 1-butanol more rapidly. An ADH activity assay indicated that Aadh1p is a major enzyme for the synthesis of ethanol and the degradation of 1-butanol in A. adeninivorans.
Collapse
Affiliation(s)
- Jakub Kasprzak
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstr. 3, D-06466 Gatersleben, Germany
| | - Marion Rauter
- Orgentis Chemicals GmbH, Bahnhofstr. 3-5, D-06466 Gatersleben, Germany
| | - Jan Riechen
- Jäckering Mühlen- und Nährmittelwerke GmbH, Vorsterhauser Weg 46, D-59007 Hamm, Germany
| | - Sebastian Worch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstr. 3, D-06466 Gatersleben, Germany
| | - Kim Baronian
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Rüdiger Bode
- Institute of Microbiology, University of Greifswald, Jahnstr. 15, D-17487 Greifswald, Germany
| | - Frieder Schauer
- Institute of Microbiology, University of Greifswald, Jahnstr. 15, D-17487 Greifswald, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstr. 3, D-06466 Gatersleben, Germany
| |
Collapse
|
21
|
Jin Y, Zhang C, Liu W, Tang Y, Qi H, Chen H, Cao S. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns. FRONTIERS IN PLANT SCIENCE 2016; 7:670. [PMID: 27242871 PMCID: PMC4870255 DOI: 10.3389/fpls.2016.00670] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/01/2016] [Indexed: 05/10/2023]
Abstract
Alcohol dehydrogenases (ADH), encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH), designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into three groups respectively, namely long-, medium-, and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into six medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and -insensitive groups, and the functions of CmADHs were discussed.
Collapse
Affiliation(s)
- Yazhong Jin
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
- College of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
- *Correspondence: Hongyan Qi, ; ; Yazhong Jin,
| | - Chong Zhang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Wei Liu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Yufan Tang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
- *Correspondence: Hongyan Qi, ; ; Yazhong Jin,
| | - Hao Chen
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Songxiao Cao
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural UniversityShenyang, China
| |
Collapse
|
22
|
Jörnvall H, Landreh M, Östberg LJ. Alcohol dehydrogenase, SDR and MDR structural stages, present update and altered era. Chem Biol Interact 2015; 234:75-9. [DOI: 10.1016/j.cbi.2014.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
23
|
Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats. Chem Biol Interact 2015; 234:85-95. [PMID: 25641189 DOI: 10.1016/j.cbi.2014.12.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/17/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
Abstract
The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified.
Collapse
|
24
|
Raj S, Ramaswamy S, Plapp BV. Yeast alcohol dehydrogenase structure and catalysis. Biochemistry 2014; 53:5791-803. [PMID: 25157460 PMCID: PMC4165444 DOI: 10.1021/bi5006442] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/22/2014] [Indexed: 11/30/2022]
Abstract
Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (ADH1) is the constitutive enzyme that reduces acetaldehyde to ethanol during the fermentation of glucose. ADH1 is a homotetramer of subunits with 347 amino acid residues. A structure for ADH1 was determined by X-ray crystallography at 2.4 Å resolution. The asymmetric unit contains four different subunits, arranged as similar dimers named AB and CD. The unit cell contains two different tetramers made up of "back-to-back" dimers, AB:AB and CD:CD. The A and C subunits in each dimer are structurally similar, with a closed conformation, bound coenzyme, and the oxygen of 2,2,2-trifluoroethanol ligated to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. In contrast, the B and D subunits have an open conformation with no bound coenzyme, and the catalytic zinc has an alternative, inverted coordination with Cys-43, Cys-153, His-66, and the carboxylate of Glu-67. The asymmetry in the dimeric subunits of the tetramer provides two structures that appear to be relevant for the catalytic mechanism. The alternative coordination of the zinc may represent an intermediate in the mechanism of displacement of the zinc-bound water with alcohol or aldehyde substrates. Substitution of Glu-67 with Gln-67 decreases the catalytic efficiency by 100-fold. Previous studies of structural modeling, evolutionary relationships, substrate specificity, chemical modification, and site-directed mutagenesis are interpreted more fully with the three-dimensional structure.
Collapse
Affiliation(s)
| | | | - Bryce V. Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
25
|
Scavenging Systems for Reactive Carbonyls in the CyanobacteriumSynechocystissp. PCC 6803. Biosci Biotechnol Biochem 2014; 77:2441-8. [DOI: 10.1271/bbb.130554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|