1
|
Shoji M, Esumi T, Masuda T, Tanaka N, Okamoto R, Sato H, Watanabe M, Takahashi E, Kido H, Ohtsuki S, Kuzuhara T. Bakuchiol targets mitochondrial proteins, prohibitins and voltage-dependent anion channels: New insights into developing antiviral agents. J Biol Chem 2024; 300:105632. [PMID: 38199573 PMCID: PMC10862021 DOI: 10.1016/j.jbc.2024.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
We previously reported that bakuchiol, a phenolic isoprenoid anticancer compound, and its analogs exert anti-influenza activity. However, the proteins targeted by bakuchiol remain unclear. Here, we investigated the chemical structures responsible for the anti-influenza activity of bakuchiol and found that all functional groups and C6 chirality of bakuchiol were required for its anti-influenza activity. Based on these results, we synthesized a molecular probe containing a biotin tag bound to the C1 position of bakuchiol. With this probe, we performed a pulldown assay for Madin-Darby canine kidney cell lysates and purified the specific bakuchiol-binding proteins with SDS-PAGE. Using nanoLC-MS/MS analysis, we identified prohibitin (PHB) 2, voltage-dependent anion channel (VDAC) 1, and VDAC2 as binding proteins of bakuchiol. We confirmed the binding of bakuchiol to PHB1, PHB2, and VDAC2 in vitro using Western blot analysis. Immunofluorescence analysis showed that bakuchiol was bound to PHBs and VDAC2 in cells and colocalized in the mitochondria. The knockdown of PHBs or VDAC2 by transfection with specific siRNAs, along with bakuchiol cotreatment, led to significantly reduced influenza nucleoprotein expression levels and viral titers in the conditioned medium of virus-infected Madin-Darby canine kidney cells, compared to the levels observed with transfection or treatment alone. These findings indicate that reducing PHBs or VDAC2 protein, combined with bakuchiol treatment, additively suppressed the growth of influenza virus. Our findings indicate that bakuchiol exerts anti-influenza activity via a novel mechanism involving these mitochondrial proteins, providing new insight for developing anti-influenza agents.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| | - Tomoyuki Esumi
- Institute of Pharmacognosy Attached to Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Narue Tanaka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Risa Okamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Hinako Sato
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Mihiro Watanabe
- Institute of Pharmacognosy Attached to Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| |
Collapse
|
2
|
Bavachin and Corylifol A Improve Muscle Atrophy by Enhancing Mitochondria Quality Control in Type 2 Diabetic Mice. Antioxidants (Basel) 2023; 12:antiox12010137. [PMID: 36671000 PMCID: PMC9855061 DOI: 10.3390/antiox12010137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes reduces muscle mass and function. Chronic inflammation and mitochondrial dysfunction play critical roles in muscle atrophy pathogenesis. Here, we investigated the effects of bavachin and corylifol A from Psoralea corylifolia L. seeds on muscle atrophy in dexamethasone-treated mice and in db/db mice. Bavachin and corylifol A enhanced muscle strength and muscle mass in dexamethasone-treated mice. In diabetic mice, they enhanced muscle strength and cross-sectional areas. Bavachin and corylifol A suppressed inflammatory cytokine (interleukin-6 and tumor necrosis factor-α) expression levels by downregulating nuclear factor-κB phosphorylation. They decreased the muscle atrophic factor (myostatin, atrogin-1, and muscle RING finger-1) expression levels. They activated the AKT synthetic signaling pathway and induced a switch from fast-type glycolytic fibers (type 2B) to slow-type oxidative fibers (types I and 2A). They increased mitochondrial biogenesis and dynamic factor (optic atrophy-1, mitofusin-1/2, fission, mitochondrial 1, and dynamin 1-like) expression levels via the AMP-activated protein kinase-peroxisome proliferator-activated receptor gamma coactivator 1-alpha signaling pathway. They also improved mitochondrial quality by upregulating the mitophagy factor (p62, parkin, PTEN-induced kinase-1, and BCL2-interacting protein-3) expression levels. Therefore, bavachin and corylifol A exert potential therapeutic effects on muscle atrophy by suppressing inflammation and improving mitochondrial function.
Collapse
|
3
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
4
|
Odontogenic Differentiation-Induced Tooth Regeneration by Psoralea corylifolia L. Curr Issues Mol Biol 2022; 44:2300-2308. [PMID: 35678685 PMCID: PMC9164060 DOI: 10.3390/cimb44050156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/22/2023] Open
Abstract
Psoralea corylifolia L. (P. corylifolia) has been used as an oriental phytomedicine to treat coldness of hands and feet in bone marrow injury. Hydroxyapatite is usually used for tooth regeneration. In this study, the role of P. corylifolia and bakuchiol, a compound originated from P. corylifolia as differentiation-inducing substances for tooth regeneration, was determined by monitoring odontogenic differentiation in human dental pulp stem cells (hDPSCs). We confirmed that P. corylifolia extracts and bakuchiol increased the odontogenic differentiation of hDPSCs. In addition, the expression of the odontogenic differentiation marker genes alkaline phosphatase (APL), Runt-related transcription factor 2 (RUNX-2), osteocalcin (OC), and dentin matrix acidic phosphoprotein-1 (DMP-1) was proved by real-time polymerase chain reaction, and protein expression of dentin matrix acidic phosphoprotein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) was proved by western blotting. Further, by confirming the increase in small mothers against decapentaplegia (SMAD) 1/5/8 phosphorylation, the SMAD signaling pathway was found to increase the differentiation of odontoblasts. This study confirmed that P. corylifolia L. extracts and bakuchiol alone promote odontogenic differentiation in hDPSCs. These results suggest that bakuchiol from P. corylifolia is responsible for odontogenic differentiation, and they encourage future in vivo studies on dentin regeneration.
Collapse
|
5
|
Han Y, Lee H, Li H, Ryu JH. Corylifol A from Psoralea corylifolia L. Enhances Myogenesis and Alleviates Muscle Atrophy. Int J Mol Sci 2020; 21:ijms21051571. [PMID: 32106603 PMCID: PMC7084366 DOI: 10.3390/ijms21051571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammatory conditions caused by cancer, chronic diseases or aging can lead to skeletal muscle atrophy. We identified myogenic compounds from Psoralea corylifolia (PC), a medicinal plant that has been used for the treatment of inflammatory and skin diseases. C2C12 mouse skeletal myoblasts were differentiated in the presence of eight compounds isolated from PC to evaluate their myogenic potential. Among them, corylifol A showed the strongest transactivation of MyoD and increased expression of myogenic markers, such as MyoD, myogenin and myosin heavy chain (MHC). Corylifol A increased the number of multinucleated and MHC-expressing myotubes. We also found that the p38 MAPK signaling pathway is essential for the myogenic action of corylifol A. Atrophic condition was induced by treatment with dexamethasone. Corylifol A protected against dexamethasone-induced myotube loss by increasing the proportion of multinucleated MHC-expressing myotubes compared with dexamethasone-damaged myotubes. Corylifol A reduced the expression of muscle-specific ubiquitin-E3 ligases (MAFbx and MuRF1) and myostatin, while activating Akt. These dual effects of corylifol A, inhibition of catabolic and activation of anabolic pathways, protect myotubes against dexamethasone damage. In summary, corylifol A isolated from P. corylifolia alleviates muscle atrophic condition through activating myoblast differentiation and suppressing muscle degradation in atrophic conditions.
Collapse
|
6
|
Bakuchiol protects against pathological cardiac hypertrophy by blocking NF-κB signaling pathway. Biosci Rep 2018; 38:BSR20181043. [PMID: 30242058 PMCID: PMC6209581 DOI: 10.1042/bsr20181043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022] Open
Abstract
Bakuchiol (Bak), a monoterpene phenol isolated from the seeds of Psoralea corylifolia, has been widely used to treat a large variety of diseases in both Indian and Chinese folkloric medicine. However, the effects of Bak on cardiac hypertrophy remain unclear. Therefore, the present study was designed to determine whether Bak could alleviate cardiac hypertrophy. Mice were subjected to aortic banding (AB) to induce cardiac hypertrophy model. Bak of 1 ml/100 g body weight was given by oral gavage once a day from 1 to 8 weeks after surgery. Our data demonstrated for the first time that Bak could attenuate pressure overload-induced cardiac hypertrophy and could attenuate fibrosis and the inflammatory response induced by AB. The results further revealed that the effect of Bak on cardiac hypertrophy was mediated by blocking the activation of the NF-κB signaling pathway. In vitro studies performed in neonatal rat cardiomyocytes further proved that the protective effect of Bak on cardiac hypertrophy is largely dependent on the NF-κB pathway. Based on our results, Bak shows profound potential for its application in the treatment of pathological cardiac hypertrophy, and we believe that Bak may be a promising therapeutic candidate to treat cardiac hypertrophy and heart failure.
Collapse
|
7
|
Lee H, Lee SJ, Bae GU, Baek NI, Ryu JH. Canadine from Corydalis turtschaninovii Stimulates Myoblast Differentiation and Protects against Myotube Atrophy. Int J Mol Sci 2017; 18:ijms18122748. [PMID: 29258243 PMCID: PMC5751347 DOI: 10.3390/ijms18122748] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023] Open
Abstract
Cachexia and sarcopenia are the main causes of muscle atrophy. These result in a reduction in the muscle fiber area, myo-protein content, and muscle strength, with various molecular modulators being involved. Although several reports have proposed potential therapeutic agents, no effective treatments have been found for muscle atrophy. We searched for myogenic modulators from medicinal plants to treat muscle diseases. We isolated six alkaloids from Corydalis turtschaninovii and evaluated their myogenic potential by using the MyoD reporter gene assay in C2C12 cells. Among the tested compounds, canadine showed the strongest transactivation of MyoD and increased MHC expression during myogenesis. The activation of p38 MAP kinase and Akt are major mechanisms that contribute to the myogenesis by canadine. Canadine increased the number of multinucleated and cylinder-shaped myotubes during myogenesis of C2C12 myoblasts. To determine the preventive effect of canadine in cancer-induced muscle wasting, differentiated C2C12 myotubes were treated with conditioned media from CT26 colon carcinoma culture (CT26 CM) in the presence of canadine. Canadine ameliorated the muscle protein degradation caused by CT26-CM by down-regulating the muscle specific-E3 ligases, MAFbx/atrogin-1 and MuRF1. In this study, we found that canadine from C. turtschaninovii stimulates myogenesis and also inhibits muscle protein degradation. Therefore, we suggest canadine as a protective agent against muscle atrophy.
Collapse
Affiliation(s)
- Hyejin Lee
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
| | - Sang-Jin Lee
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
| | - Gyu-Un Bae
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
| | - Nam-In Baek
- The Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 17104, Korea;
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
- Correspondence: ; Tel.: +82-2-710-9568
| |
Collapse
|
8
|
Lee SY, Go GY, Vuong TA, Kim JW, Lee S, Jo A, An JM, Kim SN, Seo DW, Kim JS, Kim YK, Kang JS, Lee SJ, Bae GU. Black ginseng activates Akt signaling, thereby enhancing myoblast differentiation and myotube growth. J Ginseng Res 2017; 42:116-121. [PMID: 29348730 PMCID: PMC5766703 DOI: 10.1016/j.jgr.2017.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/07/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022] Open
Abstract
Background Black ginseng (BG) has greatly enhanced pharmacological activities relative to white or red ginseng. However, the effect and molecular mechanism of BG on muscle growth has not yet been examined. In this study, we investigated whether BG could regulate myoblast differentiation and myotube hypertrophy. Methods BG-treated C2C12 myoblasts were differentiated, followed by immunoblotting for myogenic regulators, immunostaining for a muscle marker, myosin heavy chain or immunoprecipitation analysis for myogenic transcription factors. Results BG treatment of C2C12 cells resulted in the activation of Akt, thereby enhancing heterodimerization of MyoD and E proteins, which in turn promoted muscle-specific gene expression and myoblast differentiation. BG-treated myoblasts formed larger multinucleated myotubes with increased diameter and thickness, accompanied by enhanced Akt/mTOR/p70S6K activation. Furthermore, the BG treatment of human rhabdomyosarcoma cells restored myogenic differentiation. Conclusion BG enhances myoblast differentiation and myotube hypertrophy by activating Akt/mTOR/p70S6k axis. Thus, our study demonstrates that BG has promising potential to treat or prevent muscle loss related to aging or other pathological conditions, such as diabetes.
Collapse
Affiliation(s)
- Soo-Yeon Lee
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ga-Yeon Go
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Tuan Anh Vuong
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jee Won Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sullim Lee
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Ayoung Jo
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jun Min An
- Ginseng by Pharm Co., Ltd., Wonju, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Jin-Seok Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yong Kee Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Lee H, Tuong LT, Jeong JH, Lee SJ, Bae GU, Ryu JH. Isoquinoline alkaloids from Coptis japonica stimulate the myoblast differentiation via p38 MAP-kinase and Akt signaling pathway. Bioorg Med Chem Lett 2017; 27:1401-1404. [DOI: 10.1016/j.bmcl.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/24/2022]
|
10
|
Electrical Impedance Monitoring of C2C12 Myoblast Differentiation on an Indium Tin Oxide Electrode. SENSORS 2016; 16:s16122068. [PMID: 27929401 PMCID: PMC5191049 DOI: 10.3390/s16122068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023]
Abstract
Electrical cell-substrate impedance sensing is increasingly being used for label-free and real-time monitoring of changes in cell morphology and number during cell growth, drug screening, and differentiation. In this study, we evaluated the feasibility of using ECIS to monitor C2C12 myoblast differentiation using a fabricated indium tin oxide (ITO) electrode-based chip. C2C12 myoblast differentiation on the ITO electrode was validated based on decreases in the mRNA level of MyoD and increases in the mRNA levels of myogenin and myosin heavy chain (MHC). Additionally, MHC expression and morphological changes in myoblasts differentiated on the ITO electrode were comparable to those in cells in the control culture dish. From the monitoring the integration of the resistance change at 21.5 kHz, the cell differentiation was label-free and real-time detectable in 30 h of differentiation (p < 0.05).
Collapse
|