1
|
Xu Z, Liu D, Zhu J, Zhao J, Shen S, Wang Y, Yu P. Catalysts for sulfur: understanding the intricacies of enzymes orchestrating plant sulfur anabolism. PLANTA 2024; 261:16. [PMID: 39690279 DOI: 10.1007/s00425-024-04594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
MAIN CONCLUSION This review highlights the sulfur transporters, key enzymes and their encoding genes involved in plant sulfur anabolism, focusing on their occurrence, chemistry, location, function, and regulation within sulfur assimilation pathways. Sulfur, a vital element for plant life, plays diverse roles in metabolism and stress response. This review provides a comprehensive overview of the sulfur assimilation pathway in plants, highlighting the intricate network of enzymes and their regulatory mechanisms. The primary focus is on the key enzymes involved: ATP sulfurylase (ATPS), APS reductase (APR), sulfite reductase (SiR), serine acetyltransferase (SAT), and O-acetylserine(thiol)lyase (OAS-TL). ATPS initiates the process by activating sulfate to form APS, which is then reduced to sulfite by APR. SiR further reduces sulfite to sulfide, a crucial step that requires significant energy. The cysteine synthase complex (CSC), formed by SAT and OAS-TL, facilitates the synthesis of cysteine, thereby integrating serine metabolism with sulfur assimilation. The alternative sulfation pathway, catalyzed by APS kinase and sulfotransferases, is explored for its role in synthesizing essential secondary metabolites. This review also delves into the regulatory mechanism of these enzymes such as environmental stresses, sulfate availability, phytohormones, as well as translational and post-translational regulations. Understanding the key transporters and enzymes in sulfur assimilation pathways and their corresponding regulation mechanisms can help researchers grasp the importance of sulfur anabolism for the life cycle of plants, clarify how these enzymes and their regulatory processes are integrated to balance plant life systems in response to changes in both external conditions and intrinsic signals.
Collapse
Affiliation(s)
- Ziyue Xu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Dun Liu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiadong Zhu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
| | - Jiayi Zhao
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yueduo Wang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
| | - Pei Yu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China.
- Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
2
|
Foletto-Felipe MDP, Abrahão J, Contesoto IDC, Ferro AP, Grizza LHE, Menezes PVMDC, Wagner ALS, Seixas FAV, de Oliveira MAS, Tomazini LF, Constantin RP, Dos Santos WD, Ferrarese-Filho O, Marchiosi R. Inhibition of sulfur assimilation by S-benzyl-L-cysteine: Impacts on growth, photosynthesis, and leaf proteome of maize plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109173. [PMID: 39362125 DOI: 10.1016/j.plaphy.2024.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Sulfur is an essential nutrient for various physiological processes, including protein synthesis and enzyme activation. We aimed to evaluate how S-benzyl-L-cysteine (SBC), an inhibitor of the sulfur assimilation pathway, affects maize plants' growth, photosynthesis, and leaf proteomic profile. Thus, maize plants were grown for 14 days in vermiculite supplemented with SBC. Photosynthesis was assessed using light and CO2 response curves and chlorophyll a fluorescence. Leaf proteome analysis was conducted to evaluate photosynthetic protein biosynthesis, and ROS content was quantified to assess oxidative stress. Applying SBC resulted in a significant decrease in the growth of maize plants. The gas exchange analysis revealed that maize plants exhibited a diminished rate of CO2 assimilation attributable to both stomatal and non-stomatal limitations. Furthermore, SBC suppressed the activity of important elements involved in the photosynthetic electron transport chain (including photosystems I and II, cytochrome b6f, and ATP synthase) and enzymes responsible for the Calvin cycle, some of which have sulfur-containing prosthetic groups. Consequently, the diminished electron flow rate resulted in a substantial increase in the levels of ROS within the leaves. Our research highlights the crucial role of SBC in disrupting maize photosynthesis by limiting L-cysteine and assimilated sulfur availability, which are essential for the synthesis of protein and prosthetic groups and photosynthetic processes, emphasizing the potential of OAS-TL as a new herbicide site of action.
Collapse
Affiliation(s)
- Marcela de Paiva Foletto-Felipe
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil; Coordination of Degree in Biological Sciences, Federal Technological University of Paraná, Campus Dois Vizinhos, Paraná, Brazil
| | - Josielle Abrahão
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Ana Paula Ferro
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Luiz Henryque Escher Grizza
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Ana Luiza Santos Wagner
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Larissa Fonseca Tomazini
- Laboratory of Molecular Biology of Prokaryotes, Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Rodrigo Polimeni Constantin
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Wanderley Dantas Dos Santos
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Osvaldo Ferrarese-Filho
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Rogério Marchiosi
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
3
|
Morris JS, Jez JM. A tale of two switches: Redox regulation of adenosine-5'-phosphosulfate kinase in humans and plants. Structure 2023; 31:757-759. [PMID: 37419098 DOI: 10.1016/j.str.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
The sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) is a near-universal component of sulfur metabolism. In a report by Zhang et al. in this issue of Structure, X-ray crystal structures of the APS kinase domains from human PAPS synthase reveal dynamic substrate recognition and a regulatory "redox switch" analogous to that previously described only in plant APS kinases.
Collapse
Affiliation(s)
- Jeremy S Morris
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
4
|
Chen Y, Li Z, Ettoumi FE, Li D, Wang L, Zhang X, Ma Q, Xu Y, Li L, Wu B, Luo Z. The detoxification of cellular sulfite in table grape under SO 2 exposure: Quantitative evidence of sulfur absorption and assimilation patterns. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129685. [PMID: 36104911 DOI: 10.1016/j.jhazmat.2022.129685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Sulfur dioxide (SO2) and its derivatives are known to be hazardous but their common application in food, especially the grape industry, is conditionally allowed. Potential hazards to consumers and the environment could occur upon the control-lost SO2 during grape logistics and storage. Researchers have usually focused on the anti-pathogen role of SO2 whereas limited efforts were conducted on the sulfur (S) absorption, assimilation patterns, and sulfite detoxification. In this study, short-term, room-temperature, and SO2-stored grapes were investigated, whose S flux of various forms was quantified through an estimation model. Accordingly, the additional accumulated S (0.50-0.86%) in pulps from atmospheric SO2 was considered mainly through rachis transport compared to across skin surfaces and the usage arrangement of the absorbed S was included. The first quantitative evidence of induced S assimilation under SO2 was also provided, which challenged the previous knowledge. In addition, sulfite oxidase and reductase (SiO and SiR) played major roles in sulfite detoxification, being effectively stimulated at multiple levels. The induced S metabolism associated with enhanced reactive oxygen species (ROS) scavenging capacity and alleviated senescence contributed to quality maintenance. Overall, these findings provide novel insights and are valuable supports for developing SO2-controlling strategies to avoid potential hazards.
Collapse
Affiliation(s)
- Yanpei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenbiao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Fatima-Ezzahra Ettoumi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China.
| | - Lei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaochen Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Bin Wu
- Institute of Agro-products Storage and Processing & Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
5
|
de Bont L, Donnay N, Couturier J, Rouhier N. Redox regulation of enzymes involved in sulfate assimilation and in the synthesis of sulfur-containing amino acids and glutathione in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:958490. [PMID: 36051294 PMCID: PMC9426629 DOI: 10.3389/fpls.2022.958490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Sulfur is essential in plants because of its presence in numerous molecules including the two amino acids, cysteine, and methionine. Cysteine serves also for the synthesis of glutathione and provides sulfur to many other molecules including protein cofactors or vitamins. Plants absorb sulfate from their environment and assimilate it via a reductive pathway which involves, respectively, a series of transporters and enzymes belonging to multigenic families. A tight control is needed to adjust each enzymatic step to the cellular requirements because the whole pathway consumes energy and produces toxic/reactive compounds, notably sulfite and sulfide. Glutathione is known to regulate the activity of some intermediate enzymes. In particular, it provides electrons to adenosine 5'-phosphosulfate reductases but also regulates the activity of glutamate-cysteine ligase by reducing a regulatory disulfide. Recent proteomic data suggest a more extended post-translational redox control of the sulfate assimilation pathway enzymes and of some associated reactions, including the synthesis of both sulfur-containing amino acids, cysteine and methionine, and of glutathione. We have summarized in this review the known oxidative modifications affecting cysteine residues of the enzymes involved. In particular, a prominent regulatory role of protein persulfidation seems apparent, perhaps because sulfide produced by this pathway may react with oxidized thiol groups. However, the effect of persulfidation has almost not yet been explored.
Collapse
Affiliation(s)
- Linda de Bont
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Natacha Donnay
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| | | |
Collapse
|
6
|
Kitainda V, Jez JM. Structural Studies of Aliphatic Glucosinolate Chain-Elongation Enzymes. Antioxidants (Basel) 2021; 10:antiox10091500. [PMID: 34573132 PMCID: PMC8468904 DOI: 10.3390/antiox10091500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Plants evolved specialized metabolic pathways through gene duplication and functional divergence of enzymes involved in primary metabolism. The results of this process are varied pathways that produce an array of natural products useful to both plants and humans. In plants, glucosinolates are a diverse class of natural products. Glucosinolate function stems from their hydrolysis products, which are responsible for the strong flavors of Brassicales plants, such as mustard, and serve as plant defense molecules by repelling insects, fighting fungal infections, and discouraging herbivory. Additionally, certain hydrolysis products such as isothiocyanates can potentially serve as cancer prevention agents in humans. The breadth of glucosinolate function is a result of its great structural diversity, which comes from the use of aliphatic, aromatic and indole amino acids as precursors and elongation of some side chains by up to nine carbons, which, after the formation of the core glucosinolate structure, can undergo further chemical modifications. Aliphatic methionine-derived glucosinolates are the most abundant form of these compounds. Although both elongation and chemical modification of amino acid side chains are important for aliphatic glucosinolate diversity, its elongation process has not been well described at the molecular level. Here, we summarize new insights on the iterative chain-elongation enzymes methylthioalkylmalate synthase (MAMS) and isopropylmalate dehydrogenase (IPMDH).
Collapse
|
7
|
Telman W, Dietz KJ. Thiol redox-regulation for efficient adjustment of sulfur metabolism in acclimation to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4223-4236. [PMID: 30868161 DOI: 10.1093/jxb/erz118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Sulfur assimilation and sulfur metabolism are tightly controlled at the transcriptional, post-transcriptional, and post-translational levels in order to meet the demand for reduced sulfur in growth and metabolism. These regulatory mechanisms coordinate the cellular sulfhydryl supply with carbon and nitrogen assimilation in particular. Redox homeostasis is an important cellular parameter intimately connected to sulfur by means of multiple thiol modifications. Post-translational thiol modifications such as disulfide formation, sulfenylation, S-nitrosylation, persulfidation, and S-glutathionylation allow for versatile switching and adjustment of protein functions. This review focuses on redox-regulation of enzymes involved in the sulfur assimilation pathway, namely adenosine 5´-phosphosulfate reductase (APR), adenosine 5´-phosphosulfate kinase (APSK), and γ-glutamylcysteine ligase (GCL). The activity of these enzymes is adjusted at the transcriptional and post-translational level depending on physiological requirements and the state of the redox and reactive oxygen species network, which are tightly linked to abiotic stress conditions. Hormone-dependent fine-tuning contributes to regulation of sulfur assimilation. Thus, the link between oxylipin signalling and sulfur assimilation has been substantiated by identification of the so-called COPS module in the chloroplast with its components cyclophilin 20-3, O-acetylserine thiol lyase, 2-cysteine peroxiredoxin, and serine acetyl transferase. We now have a detailed understanding of how regulation enables the fine-tuning of sulfur assimilation under both normal and abiotic stress conditions.
Collapse
Affiliation(s)
- Wilena Telman
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr. 25, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr. 25, Bielefeld, Germany
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. 27, Bielefeld, Germany
| |
Collapse
|
8
|
Jez JM. Structural biology of plant sulfur metabolism: from sulfate to glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4089-4103. [PMID: 30825314 DOI: 10.1093/jxb/erz094] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Sulfur is an essential element for all organisms. Plants must assimilate this nutrient from the environment and convert it into metabolically useful forms for the biosynthesis of a wide range of compounds, including cysteine and glutathione. This review summarizes structural biology studies on the enzymes involved in plant sulfur assimilation [ATP sulfurylase, adenosine-5'-phosphate (APS) reductase, and sulfite reductase], cysteine biosynthesis (serine acetyltransferase and O-acetylserine sulfhydrylase), and glutathione biosynthesis (glutamate-cysteine ligase and glutathione synthetase) pathways. Overall, X-ray crystal structures of enzymes in these core pathways provide molecular-level information on the chemical events that allow plants to incorporate sulfur into essential metabolites and revealed new biochemical regulatory mechanisms, such as structural rearrangements, protein-protein interactions, and thiol-based redox switches, for controlling different steps in these pathways.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Jobe TO, Zenzen I, Rahimzadeh Karvansara P, Kopriva S. Integration of sulfate assimilation with carbon and nitrogen metabolism in transition from C3 to C4 photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4211-4221. [PMID: 31124557 PMCID: PMC6698703 DOI: 10.1093/jxb/erz250] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/21/2019] [Indexed: 05/08/2023]
Abstract
The first product of sulfate assimilation in plants, cysteine, is a proteinogenic amino acid and a source of reduced sulfur for plant metabolism. Cysteine synthesis is the convergence point of the three major pathways of primary metabolism: carbon, nitrate, and sulfate assimilation. Despite the importance of metabolic and genetic coordination of these three pathways for nutrient balance in plants, the molecular mechanisms underlying this coordination, and the sensors and signals, are far from being understood. This is even more apparent in C4 plants, where coordination of these pathways for cysteine synthesis includes the additional challenge of differential spatial localization. Here we review the coordination of sulfate, nitrate, and carbon assimilation, and show how they are altered in C4 plants. We then summarize current knowledge of the mechanisms of coordination of these pathways. Finally, we identify urgent questions to be addressed in order to understand the integration of sulfate assimilation with carbon and nitrogen metabolism particularly in C4 plants. We consider answering these questions to be a prerequisite for successful engineering of C4 photosynthesis into C3 crops to increase their efficiency.
Collapse
Affiliation(s)
- Timothy O Jobe
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Ivan Zenzen
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Parisa Rahimzadeh Karvansara
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Correspondence:
| |
Collapse
|
10
|
Abstract
Sulfur is present in the amino acids cysteine and methionine and in a large range of essential coenzymes and cofactors and is therefore essential for all organisms. It is also a constituent of sulfate esters in proteins, carbohydrates, and numerous cellular metabolites. The sulfation and desulfation reactions modifying a variety of different substrates are commonly known as sulfation pathways. Although relatively little is known about the function of most sulfated metabolites, the synthesis of activated sulfate used in sulfation pathways is essential in both animal and plant kingdoms. In humans, mutations in the genes encoding the sulfation pathway enzymes underlie a number of developmental aberrations, and in flies and worms, their loss-of-function is fatal. In plants, a lower capacity for synthesizing activated sulfate for sulfation reactions results in dwarfism, and a complete loss of activated sulfate synthesis is also lethal. Here, we review the similarities and differences in sulfation pathways and associated processes in animals and plants, and we point out how they diverge from bacteria and yeast. We highlight the open questions concerning localization, regulation, and importance of sulfation pathways in both kingdoms and the ways in which findings from these "red" and "green" experimental systems may help reciprocally address questions specific to each of the systems.
Collapse
Affiliation(s)
- Süleyman Günal
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Rebecca Hardman
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany.
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom.
| |
Collapse
|
11
|
Akbudak MA, Filiz E. Genome-wide analyses of ATP sulfurylase (ATPS) genes in higher plants and expression profiles in sorghum (Sorghum bicolor) under cadmium and salinity stresses. Genomics 2019; 111:579-589. [DOI: 10.1016/j.ygeno.2018.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 01/15/2023]
|
12
|
Hasan MK, Liu CX, Pan YT, Ahammed GJ, Qi ZY, Zhou J. Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants. Sci Rep 2018; 8:10182. [PMID: 29976982 PMCID: PMC6033901 DOI: 10.1038/s41598-018-28561-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Despite involvement of melatonin (MT) in plant growth and stress tolerance, its role in sulfur (S) acquisition and assimilation remains unclear. Here we report that low-S conditions cause serious growth inhibition by reducing chlorophyll content, photosynthesis and biomass accumulation. S deficiency evoked oxidative stress leading to the cell structural alterations and DNA damage. In contrast, MT supplementation to the S-deprived plants resulted in a significant diminution in reactive oxygen species (ROS) accumulation, thereby mitigating S deficiency-induced damages to cellular macromolecules and ultrastructures. Moreover, MT promoted S uptake and assimilation by regulating the expression of genes encoding enzymes involved in S transport and metabolism. MT also protected cells from ROS-induced damage by regulating 2-cysteine peroxiredoxin and biosynthesis of S-compounds. These results provide strong evidence that MT can enhance plant tolerance to low-S-induced stress by improving S uptake, metabolism and redox homeostasis, and thus advocating beneficial effects of MT on increasing the sulfur utilization efficiency.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China.,Department of Agricultural Chemistry, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Chen-Xu Liu
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Yan-Ting Pan
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Zhen-Yu Qi
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China. .,Agricultural Experiment Station, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China.
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China. .,Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, PR China.
| |
Collapse
|
13
|
Gallo C, Nuzzo G, d'Ippolito G, Manzo E, Sardo A, Fontana A. Sterol Sulfates and Sulfotransferases in Marine Diatoms. Methods Enzymol 2018; 605:101-138. [PMID: 29909823 DOI: 10.1016/bs.mie.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sterol sulfates are widely occurring molecules in marine organisms. Their importance has been so far underestimated although many of these compounds are crucial mediators of physiological and ecological functions in other organisms. Biosynthesis of sterol sulfates is controlled by cytosolic sulfotransferases (SULTs), a varied family of enzymes that catalyze the transfer of a sulfo residue (-SO3H) from the universal donor 3'-phosphoadenosine-5'-phosphosulfate to the hydroxyl function at C-3 of the steroid skeleton. The absence of molecular tools has been the main impediment to the development of a biosynthetic study of this class of compounds in marine organisms. In fact, there is very limited information about these enzymes in marine environments. SULT activity has, however, been reported in several marine species, and, recently, the production of sterol sulfates has been linked to the control of growth in marine diatoms. In this chapter, we describe methods for the study of sterol sulfates in this lineage of marine microalgae. The main aim is to provide the tools useful to deal with the biosynthesis and regulation of these compounds and to circumvent the bottleneck of the lack of molecular information. The protocols have been designed for marine diatoms, but most of the procedures can be used for other marine organisms.
Collapse
Affiliation(s)
- Carmela Gallo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Genoveffa Nuzzo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Giuliana d'Ippolito
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy.
| | - Emiliano Manzo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Angela Sardo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Angelo Fontana
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy.
| |
Collapse
|
14
|
|
15
|
Kumar S, Verma S, Trivedi PK. Involvement of Small RNAs in Phosphorus and Sulfur Sensing, Signaling and Stress: Current Update. FRONTIERS IN PLANT SCIENCE 2017; 8:285. [PMID: 28344582 PMCID: PMC5344913 DOI: 10.3389/fpls.2017.00285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/16/2017] [Indexed: 05/14/2023]
Abstract
Plants require several essential mineral nutrients for their growth and development. These nutrients are required to maintain physiological processes and structural integrity in plants. The root architecture has evolved to absorb nutrients from soil and transport them to other parts of the plant. Nutrient deficiency affects several physiological and biological processes in plants and leads to reduction in crop productivity and yield. To compensate this adversity, plants have developed adaptive mechanisms to enhance the acquisition, conservation, and mobilization of these nutrients under deficient or adverse conditions. In addition, plants have evolved an intricate nexus of complex signaling cascades, which help in nutrient sensing and uptake as well as to maintain nutrient homeostasis. In recent years, small non-coding RNAs such as micro RNAs (miRNAs) and endogenous small interfering RNAs have emerged as important component in regulating plant stress responses. A set of these small RNAs (sRNAs) have been implicated in regulating various processes involved in nutrient uptake, assimilation, and deficiency. In response to phosphorus (P) and sulphur (S) deficiencies, role of sRNAs, miR395 and miR399, have been identified to be instrumental; however, many more miRNAs might be involved in regulating the plant response to these nutrient stresses. These sRNAs modulate expression of target genes in response to P and S deficiencies and regulate their uptake and utilization for proper growth and development of the plant. This review summarizes the current understanding of uptake, sensing, and signaling of P and S and highlights the regulatory role of sRNAs in adaptive responses to these nutrient stresses in plants.
Collapse
Affiliation(s)
- Smita Kumar
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- Centre of Bio-Medical ResearchSanjay Gandhi Post-Graduate Institute of Medical Sciences Lucknow, India
- *Correspondence: Prabodh K. Trivedi, ; Smita Kumar,
| | - Saurabh Verma
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Prabodh K. Trivedi
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- *Correspondence: Prabodh K. Trivedi, ; Smita Kumar,
| |
Collapse
|