1
|
Dinić J, Podolski-Renić A, Novaković M, Li L, Opsenica I, Pešić M. Plant-Based Products Originating from Serbia That Affect P-glycoprotein Activity. Molecules 2024; 29:4308. [PMID: 39339303 PMCID: PMC11433820 DOI: 10.3390/molecules29184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our review paper evaluates the impact of plant-based products, primarily derived from plants from Serbia, on P-glycoprotein (P-gp) activity and their potential in modulating drug resistance in cancer therapy. We focus on the role and regulation of P-gp in cellular physiology and its significance in addressing multidrug resistance in cancer therapy. Additionally, we discuss the modulation of P-gp activity by 55 natural product drugs, including derivatives for some of them, based on our team's research findings since 2011. Specifically, we prospect into sesquiterpenoids from the genera Artemisia, Curcuma, Ferula, Inula, Petasites, and Celastrus; diterpenoids from the genera Salvia and Euphorbia; chalcones from the genera Piper, Glycyrrhiza, Cullen, Artemisia, and Humulus; riccardins from the genera Lunularia, Monoclea, Dumortiera, Plagiochila, and Primula; and diarylheptanoids from the genera Alnus and Curcuma. Through comprehensive analysis, we aim to highlight the potential of natural products mainly identified in plants from Serbia in influencing P-gp activity and overcoming drug resistance in cancer therapy, while also providing insights into future perspectives in this field.
Collapse
Affiliation(s)
- Jelena Dinić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Miroslav Novaković
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Liang Li
- Key Laboratory of Bioactive Substance and Function of Natural Medicines, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China;
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| |
Collapse
|
2
|
PlatyphyllenoneExerts Anti-Metastatic Effects on Human Oral Cancer Cells by Modulating Cathepsin L Expression, MAPK Pathway and Epithelial-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22095012. [PMID: 34065077 PMCID: PMC8125947 DOI: 10.3390/ijms22095012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Advanced-stage oral cancers with lymph node metastasis are associated with poor prognosis and a high mortality rate. Although recent advancement in cancer treatment has effectively improved the oral cancer prognosis, the majority of therapeutic interventions are highly expensive and are associated with severe sideeffects. In the present study, we studied the efficacy of a diarylheptanoid derivative, platyphyllenone, in modulating the metastatic potential of human oral cancer cells. Specifically, we treated the human oral cancer cells (FaDu, Ca9-22, and HSC3) with different concentrations of platyphyllenone and measured the cell proliferation, migration, and invasion. The study findings revealed that platyphyllenonesignificantly inhibited the motility, migration, and invasion of human oral cancer cells. Mechanistically, platyphyllenone reduced p38 phosphorylation, decreased β-catenin and Slug, increased E-cadherin expression, and reduced cathepsin L expression, which collectively led to a reduction in cancer cell migration and invasion. Taken together, our study indicates that platyphyllenone exerts significant anti-metastatic effects on oral cancer cells by modulating cathepsin L expression, the MAPK signaling pathway, and the epithelial-mesenchymal transition process.
Collapse
|
3
|
Motiur Rahman AFM, Lu Y, Lee HJ, Jo H, Yin W, Alam MS, Cha H, Kadi AA, Kwon Y, Jahng Y. Linear diarylheptanoids as potential anticancer therapeutics: synthesis, biological evaluation, and structure–activity relationship studies. Arch Pharm Res 2018; 41:1131-1148. [DOI: 10.1007/s12272-018-1004-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 01/06/2018] [Indexed: 01/06/2023]
|
4
|
Yang EJ, An JH, Son YK, Yeo JH, Song KS. The Cytotoxic Constituents ofBetula platyphyllaand their Effects on Human Lung A549 Cancer Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.20307/nps.2018.24.4.219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ju-Hee An
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youn Kyoung Son
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Joo-Hong Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Ren X, He T, Chang Y, Zhao Y, Chen X, Bai S, Wang L, Shen M, She G. The Genus Alnus, A Comprehensive Outline of Its Chemical Constituents and Biological Activities. Molecules 2017; 22:E1383. [PMID: 28825681 PMCID: PMC6152317 DOI: 10.3390/molecules22081383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/16/2017] [Indexed: 01/30/2023] Open
Abstract
The genus Alnus (Betulaceae) is comprised of more than 40 species. Many species of this genus have a long history of use in folk medicines. Phytochemical investigations have revealed the presence of diarylheptanoids, polyphenols, flavonoids, terpenoids, steroids and other compounds. Diarylheptanoids, natural products with a 1,7-diphenylheptane structural skeleton, are the dominant constituents in the genus, whose anticancer effect has been brought into focus. Pure compounds and crude extracts from the genus exhibit a wide spectrum of pharmacological activities both in vitro and in vivo. This paper compiles 273 naturally occurring compounds from the genus Alnus along with their structures and pharmacological activities, as reported in 138 references.
Collapse
Affiliation(s)
- Xueyang Ren
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Ting He
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yanli Chang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yicheng Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Xiaoyi Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Shaojuan Bai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Le Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Meng Shen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Gaimei She
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
6
|
Novakovic M, Nikodinovic-Runic J, Veselinovic J, Ilic-Tomic T, Vidakovic V, Tesevic V, Milosavljevic S. Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus viridis ssp. viridis Bark. JOURNAL OF NATURAL PRODUCTS 2017; 80:1255-1263. [PMID: 28368586 DOI: 10.1021/acs.jnatprod.6b00805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Seven derivatives of pentacyclic triterpene acids (1-7) were isolated from the bark of Alnus viridis ssp. viridis using a combination of column chromatography and semipreparative HPLC. Compounds 1-3, 6, and 7 were determined to be new after spectroscopic data interpretation and were assigned as 27-hydroxyalphitolic acid derivatives (1-3), a 27-hydroxybetulinic acid derivative (6), and a 3-epi-maslinic acid derivative (7), respectively. Pentacyclic triterpenoids with a C-27 hydroxymethyl group have been found in species of the genus Alnus for the first time. These compounds were subjected to cytotoxicity testing against a number of cancer cell lines. Also, selected pentacyclic triterpenoids were selected as potential inhibitors of topoisomerases I and IIα for an in silico investigation.
Collapse
Affiliation(s)
- Miroslav Novakovic
- Institute of Chemistry, Technology and Metallurgy, ‡Institute of Molecular Genetics and Genetic Engineering, §Institute for Biological Research "Sinisa Stankovic", and ⊥Faculty of Chemistry, University of Belgrade , 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Chemistry, Technology and Metallurgy, ‡Institute of Molecular Genetics and Genetic Engineering, §Institute for Biological Research "Sinisa Stankovic", and ⊥Faculty of Chemistry, University of Belgrade , 11000 Belgrade, Serbia
| | - Jovana Veselinovic
- Institute of Chemistry, Technology and Metallurgy, ‡Institute of Molecular Genetics and Genetic Engineering, §Institute for Biological Research "Sinisa Stankovic", and ⊥Faculty of Chemistry, University of Belgrade , 11000 Belgrade, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Chemistry, Technology and Metallurgy, ‡Institute of Molecular Genetics and Genetic Engineering, §Institute for Biological Research "Sinisa Stankovic", and ⊥Faculty of Chemistry, University of Belgrade , 11000 Belgrade, Serbia
| | - Vera Vidakovic
- Institute of Chemistry, Technology and Metallurgy, ‡Institute of Molecular Genetics and Genetic Engineering, §Institute for Biological Research "Sinisa Stankovic", and ⊥Faculty of Chemistry, University of Belgrade , 11000 Belgrade, Serbia
| | - Vele Tesevic
- Institute of Chemistry, Technology and Metallurgy, ‡Institute of Molecular Genetics and Genetic Engineering, §Institute for Biological Research "Sinisa Stankovic", and ⊥Faculty of Chemistry, University of Belgrade , 11000 Belgrade, Serbia
| | - Slobodan Milosavljevic
- Institute of Chemistry, Technology and Metallurgy, ‡Institute of Molecular Genetics and Genetic Engineering, §Institute for Biological Research "Sinisa Stankovic", and ⊥Faculty of Chemistry, University of Belgrade , 11000 Belgrade, Serbia
| |
Collapse
|