1
|
Potdar P, Kharat A, Sanap A, Kheur S, Bhonde R. Pancreatic β cell models for screening insulin secretagogues and cytotoxicity. J Appl Toxicol 2025; 45:89-106. [PMID: 39662958 DOI: 10.1002/jat.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 12/13/2024]
Abstract
In the past 2-3 decades, numerous attempts have been made to create an insulin-secreting β cell line that maintains normal insulin secretion. However, primary β cell cultures have finite life and, therefore, cannot be used for long-term experiments. The most widely used insulin-secreting cell lines are Insulinoma-1, rat insulinoma cell line, hamster pancreatic β cell line, mouse insulinoma, and β tumor cell line. Insulinoma-derived cell lines show infinite growth in tissue culture but exhibit varying differences in their insulin responsiveness to glucose levels compared to normal β cells. Despite difficulties with β cell cultures, these cell lines have offered some useful insights in diabetes research concerning physiological functions and pathological investigations. In this review, we describe insulinoma cell lines used for drug screening, insulin secretion, cell viability, proliferation, and other relevant cellular functions. In addition, we have also incorporated recently developed human β cell lines. These cell lines have provided some helpful insights into physiological activities and pathology in diabetes research, despite challenges with β cell culturing. We propose that these cell lines could also be explored for screening Ayurvedic Rasayanas and homeopathy preparations for their cytotoxicity and insulin secretagogue activities to have evidence-based data on alternative and complementary medicines.
Collapse
Affiliation(s)
- Pranjali Potdar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| |
Collapse
|
2
|
Kuang M, Yang R, Huang X, Wang C, Sheng G, Xie G, Zou Y. Assessing temporal differences in the predictive power of baseline TyG-related parameters for future diabetes: an analysis using time-dependent receiver operating characteristics. J Transl Med 2023; 21:299. [PMID: 37138277 PMCID: PMC10158224 DOI: 10.1186/s12967-023-04159-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND It is known that measuring the triglyceride glucose (TyG) index and TyG-related parameters [triglyceride glucose-body mass index (TyG-BMI), triglyceride glucose-waist circumference (TyG-WC), and triglyceride glucose-waist to height ratio (TyG-WHtR)] can predict diabetes; this study aimed to compare the predictive value of the baseline TyG index and TyG-related parameters for the onset of diabetes at different future periods. METHODS We conducted a longitudinal cohort study involving 15,464 Japanese people who had undergone health physical examinations. The subject's TyG index and TyG-related parameters were measured at the first physical examination, and diabetes was defined according to the American Diabetes Association criteria. Multivariate Cox regression models and time-dependent receiver operating characteristic (ROC) curves were constructed to examine and compare the risk assessment/predictive value of the TyG index and TyG-related parameters for the onset of diabetes in different future periods. RESULTS The mean follow-up period of the current study cohort was 6.13 years, with a maximum of 13 years, and the incidence density of diabetes was 39.88/10,000 person-years. In multivariate Cox regression models with standardized hazard ratios (HRs), we found that both the TyG index and TyG-related parameters were significantly and positively associated with diabetes risk and that the TyG-related parameters were stronger in assessing diabetes risk than the TyG index, with TyG-WC being the best parameter (HR per SD increase: 1.70, 95% CI 1.46, 1.97). In addition, TyG-WC also showed the highest predictive accuracy in time-dependent ROC analysis for diabetes occurring in the short-term (2-6 years), while TyG-WHtR had the highest predictive accuracy and the most stable predictive threshold for predicting the onset of diabetes in the medium- to long-term (6-12 years). CONCLUSIONS These results suggest that the TyG index combined with BMI, WC, and WHtR can further improve its ability to assess/predict the risk of diabetes in different future periods, where TyG-WC was not only the best parameter for assessing diabetes risk but also the best risk marker for predicting future diabetes in the short-term, while TyG-WHtR may be more suitable for predicting future diabetes in the medium- to long-term.
Collapse
Affiliation(s)
- Maobin Kuang
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Ruijuan Yang
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Endocrinology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Xin Huang
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Chao Wang
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Guotai Sheng
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Guobo Xie
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China.
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Bouazza A, Fontaine E, Leverve X, Koceir EA. Interference of altered plasma trace elements profile with hyperhomocysteinemia and oxidative stress damage to insulin secretion dysfunction in Psammomys obesus: focus on the selenium. Arch Physiol Biochem 2023; 129:505-518. [PMID: 33171059 DOI: 10.1080/13813455.2020.1839501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The objective of this study is to investigate the relationship between altered plasma trace elements, particularly selenium (Se), with Hyper-homocysteinemia (HhCys) as a predictive factor of insulin secretion dysfunction. The study is carried out on adult Psammomys obesus, divided in 4 experimental groups: (I) Normoglycemic/Normoinsulinemic; (II) Normoglycemic/Hyperinsulinemic; (III) Hyperglycaemic/Hyperinsulinemic and (IV) Hyperglycaemic/Insulin deficiency with ketoacidosis. The data showed that a drastic depletion of Se plasma levels is positively correlated with HhCys (>15 µmol/L; p < .001), concomitantly with decreased GPx activity, GSH levels, and GSH/GSSG ratio in group IV both in plasma and liver. In contrast, SOD activity is increased (p ≤ .001) in group IV both in plasma and liver. However, plasma Cu and Mn levels increased, while plasma Zn levels decreased in group IV (p < .001). Our study confirms the increase of plasma hCys levels seemed to be a major contributing factor to antioxidant capacities and alters the availability of selenium metabolism by interference with homocysteine synthesis in the insulin secretion deficiency stage.
Collapse
Affiliation(s)
- Asma Bouazza
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Eric Fontaine
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Xavier Leverve
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
4
|
Roma LP, Jonas JC. Nutrient Metabolism, Subcellular Redox State, and Oxidative Stress in Pancreatic Islets and β-Cells. J Mol Biol 2019; 432:1461-1493. [PMID: 31634466 DOI: 10.1016/j.jmb.2019.10.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Insulin-secreting pancreatic β-cells play a critical role in blood glucose homeostasis and the development of type 2 diabetes (T2D) in the context of insulin resistance. Based on data obtained at the whole cell level using poorly specific chemical probes, reactive oxygen species (ROS) such as superoxide and hydrogen peroxide have been proposed to contribute to the stimulation of insulin secretion by nutrients (positive role) and to the alterations of cell survival and secretory function in T2D (negative role). This raised the controversial hypothesis that any attempt to decrease β-cell oxidative stress and apoptosis in T2D would further impair insulin secretion. Over the last decade, the development of genetically-encoded redox probes that can be targeted to cellular compartments of interest and are specific of redox couples allowed the evaluation of short- and long-term effects of nutrients on β-cell redox changes at the subcellular level. The data indicated that the nutrient regulation of β-cell redox signaling and ROS toxicity is far more complex than previously thought and that the subcellular compartmentation of these processes cannot be neglected when evaluating the mechanisms of ROS production or the efficacy of antioxidant enzymes and antioxidant drugs under glucolipotoxic conditions and in T2D. In this review, we present what is currently known about the compartmentation of redox homeostatic systems and tools to investigate it. We then review data about the effects of nutrients on β-cell subcellular redox state under normal conditions and in the context of T2D and discuss challenges and opportunities in the field.
Collapse
Affiliation(s)
- Leticia P Roma
- Universität des Saarlandes, Biophysics Department, Center for Human and Molecular Biology, Kirbergerstrasse Building 48, 66421, Homburg/Saar, Germany
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), B-1200 Brussels, Belgium.
| |
Collapse
|