1
|
Zeng C, Su S, Fang S, Jiang H, Yang S, Wu W. Palladium-Catalyzed Tandem Cyclization of Bromoalkynes, Anilines and CO: Access to 1,3-Substituted Maleimides. Chem Asian J 2023:e202300880. [PMID: 37983560 DOI: 10.1002/asia.202300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Indexed: 11/22/2023]
Abstract
A novel palladium-catalyzed three-component carbonylation reaction for the assembly of various 1,3-substituted maleimide derivatives from haloalkynes and simple anilines. The nucleophilic addition reaction of haloalkynes, anilines and CO, and insertion of carbonyl have been achieved sequentially in this reaction. The high chemo- and regioselectivities, as well as no need of expensive ligands or additives further illustrate the synthetic value of this approach.
Collapse
Affiliation(s)
- Caijin Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shaoting Su
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Songjia Fang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Huangfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shaorong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Tian Y, Ma J, Wang H, Yi X, Wang H, Zhang H, Guo S, Yang Y, Zhang B, Du J, Shi Q, Gao T, Guo W, Li C. BCAT2 promotes melanoma progression by activating lipogenesis via the epigenetic regulation of FASN and ACLY expressions. Cell Mol Life Sci 2023; 80:315. [PMID: 37801083 PMCID: PMC11073144 DOI: 10.1007/s00018-023-04965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Melanoma is the most lethal skin cancer originating from the malignant transformation of epidermal melanocyte. The dysregulation of cellular metabolism is a hallmark of cancer, including in melanoma. Aberrant branched-chain amino acids (BCAA) metabolism and related enzymes has been greatly implicated in the progression of multiple types of cancer, whereas remains far from understood in melanoma. Herein, we reported that the critical BCAA metabolism enzyme branched-chain amino acid transaminase 2 (BCAT2) is an oncogenic factor in melanoma by activating lipogenesis via the epigenetic regulation of fatty acid synthase (FASN) and ATP-citrate lyase (ACLY) expressions. Firstly, we found that BCAT2 expression was prominently increased in melanoma, and highly associated with clinical stage. Then, it was proved that the deficiency of BCAT2 led to impaired tumor cell proliferation, invasion and migration in vitro, and tumor growth and metastasis in vivo. Further, RNA sequencing technology and a panel of biochemical assays demonstrated that BCAT2 regulated de novo lipogenesis via the regulation of the expressions of both FASN and ACLY. Mechanistically, the inhibition of BCAT2 suppressed the generation of intracellular acetyl-CoA, mitigating P300-dependent histone acetylation at the promoter of FASN and ACLY, and thereby their transcription. Ultimately, zinc finger E-box binding homeobox 1 (ZEB1) was identified as the upstream transcriptional factor responsible for BCAT2 up-regulation in melanoma. Our results demonstrate that BCAT2 promotes melanoma progression by epigenetically regulating FASN and ACLY expressions via P300-dependent histone acetylation. Targeting BCAT2 could be exploited as a promising strategy to restrain tumor progression in melanoma.
Collapse
Affiliation(s)
- Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Zhang L, Chang N, Liu J, Liu Z, Wu Y, Sui L, Chen W. Reprogramming lipid metabolism as potential strategy for hematological malignancy therapy. Front Oncol 2022; 12:987499. [PMID: 36106108 PMCID: PMC9465383 DOI: 10.3389/fonc.2022.987499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hematological malignancies are one of the most lethal illnesses that seriously threaten human life and health. Lipids are important constituents of various biological membranes and substances for energy storage and cell signaling. Furthermore, lipids are critical in the normal physiological activities of cells. In the process of the lethal transformation of hematological malignancies, lipid metabolism reprogramming meets the material and energy requirements of rapidly proliferating and dividing tumor cells. A large number of studies have shown that dysregulated lipid metabolism, commonly occurs in hematological malignancies, mediating the proliferation, growth, migration, invasion, apoptosis, drug resistance and immune escape of tumor cells. Targeting the lipid metabolism pathway of hematological malignancies has become an effective therapeutic approach. This article reviews the oncogenic mechanisms of lipid metabolism reprogramming in hematological malignancies, including fatty acid, cholesterol and phospholipid metabolism, thereby offering an insight into targeting lipid metabolism in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Leqiang Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ning Chang
- Peking University Cancer Hospital, Beijing, China
| | - Jia Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zhuojun Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yajin Wu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Linlin Sui
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| | - Wei Chen
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| |
Collapse
|
4
|
Garnica P, Encío I, Plano D, Palop JA, Sanmartín C. Organoseleno cytostatic derivatives: Autophagic cell death with AMPK and JNK activation. Eur J Med Chem 2019; 175:234-246. [PMID: 31082766 DOI: 10.1016/j.ejmech.2019.04.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023]
Abstract
Selenocyanates and diselenides are potential antitumor agents. Here we report two series of selenium derivatives related to selenocyanates and diselenides containing carboxylic, amide and imide moieties. These compounds were screened for their potency and selectivity against seven tumor cell lines and two non-malignant cell lines. Results showed that MCF-7 cells were especially sensitive to the treatment, with seven compounds presenting GI50 values below 10 μM. Notably, the carboxylic selenocyanate 8b and the cyclic imide 10a also displayed high selectivity for tumor cells. Treatment of MCF-7 cells with these compounds resulted in cell cycle arrest at S phase, increased levels of pJNK and pAMPK and caspase independent cell death. Autophagy inhibitors wortmannin and chloroquine partially prevented 8b and 10a induced cell death. Consistent with autophagy, increased Beclin1 and LC3-IIB and reduced SQSTM1/p62 levels were detected. Our results point to 8b and 10a as autophagic cell death inducers.
Collapse
Affiliation(s)
- Pablo Garnica
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Campus Universitario, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008, Pamplona, Spain
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008, Pamplona, Spain; Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, E-31008, Pamplona, Spain
| | - Daniel Plano
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Campus Universitario, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008, Pamplona, Spain
| | - Juan A Palop
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Campus Universitario, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008, Pamplona, Spain
| | - Carmen Sanmartín
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Campus Universitario, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008, Pamplona, Spain.
| |
Collapse
|
5
|
Yi X, Wu P, Liu J, Gong Y, Xu X, Li W. Identification of the potential key genes for adipogenesis from human mesenchymal stem cells by RNA-Seq. J Cell Physiol 2019; 234:20217-20227. [PMID: 30989650 DOI: 10.1002/jcp.28621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/22/2019] [Indexed: 01/23/2023]
Abstract
Adipogenesis, a physiological process initiated with the committed preadipocytes expressing adipocyte-specific genes and terminated in mature, differentiated and functional adipocytes, mainly involved with energy homeostasis. Abnormal distribution-changes and dysfunctions in adipogenesis may lead to complex physiopathological disorders. However, it remains unclear for the key players working for the whole complex differentiating process of adipogenesis. Here, it investigated transcriptional profiling of adipogenesis from human mesenchymal stem cells (hMSCs) by RNA-Seq transcriptome technique. Oil Red O staining assays were performed to assess adipogenic potential. Quantitative real-time PCR (qRT-PCR) and lentivirus transfection assays by small interference RNA (siRNA) were conducted to confirm the function of the candidate genes. A total of 1,078 differentially expressed genes shared at 7, 14, 21, and 28 days during adipogenesis from hMSCs, and 706 genes were significantly differentially expressed. It identified 20 potential key genes responsible for adipogenesis with four genes downregulating. The candidate gene, coagulation factor II thrombin receptor (F2R), encoding coagulation factor II thrombin receptor involving with a 7-transmembrane receptor involved in the regulation of thrombotic response, also known as proteinase-activated receptor-1, contributed to adipogenesis, especially at Day 14, by Oil Red O staining, qRT-PCR, and western blot after siRNA. A unique discovery shed new light to understand the key players of the whole processes of adipogenesis from hMSCs. The gene F2R might be used as an adipogenic marker to provide a potential target for understanding the metabolic syndromes like obesity, type-2 diabetes, steatosis, atherosclerosis, and osteoporosis.
Collapse
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| |
Collapse
|
6
|
Liang YX, Meng XH, Yang M, Mehfooz H, Zhao YL. Zn(OAc)2-catalyzed tandem cyclization of isocyanides, α-diazoketones, and anhydrides: a general route to polysubstituted maleimides. Chem Commun (Camb) 2019; 55:12519-12522. [DOI: 10.1039/c9cc05802h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A zinc-catalyzed three-component reaction of isocyanides, α-diazoketones, and anhydrides has been realized as a novel and efficient method for the synthesis of polysubstituted maleimides.
Collapse
Affiliation(s)
- Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Haroon Mehfooz
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
7
|
Yang J, Liu J, Jackstell R, Beller M. Palladium-catalyzed aerobic oxidative carbonylation of alkynes with amines: a general access to substituted maleimides. Chem Commun (Camb) 2018; 54:10710-10713. [DOI: 10.1039/c8cc05802d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A catalytic oxidative carbonylation reaction was developed for the synthesis of polysubstituted maleimides from alkynes and amines with air as a green oxidant.
Collapse
Affiliation(s)
- Ji Yang
- Leibniz-Institut für Katalyse an der Universität Rostock
- 18059 Rostock
- Germany
| | - Jiawang Liu
- Leibniz-Institut für Katalyse an der Universität Rostock
- 18059 Rostock
- Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse an der Universität Rostock
- 18059 Rostock
- Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der Universität Rostock
- 18059 Rostock
- Germany
| |
Collapse
|
8
|
Ding B, Wan LZ, Zhang YQ. Biosafety Evaluation of Three Sodium Lauryl N-Amino Acids Synthesized from Silk Industrial Waste in Mice. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-1995-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Anderson KG, Stromnes IM, Greenberg PD. Obstacles Posed by the Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies. Cancer Cell 2017; 31:311-325. [PMID: 28292435 PMCID: PMC5423788 DOI: 10.1016/j.ccell.2017.02.008] [Citation(s) in RCA: 502] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
T cell dysfunction in solid tumors results from multiple mechanisms. Altered signaling pathways in tumor cells help produce a suppressive tumor microenvironment enriched for inhibitory cells, posing a major obstacle for cancer immunity. Metabolic constraints to cell function and survival shape tumor progression and immune cell function. In the face of persistent antigen, chronic T cell receptor signaling drives T lymphocytes to a functionally exhausted state. Here we discuss how the tumor and its microenvironment influences T cell trafficking and function with a focus on melanoma, and pancreatic and ovarian cancer, and discuss how scientific advances may help overcome these hurdles.
Collapse
Affiliation(s)
- Kristin G Anderson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Mail Stop D3-100, P.O. Box 19024, Seattle, WA 98109, USA; Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ingunn M Stromnes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Mail Stop D3-100, P.O. Box 19024, Seattle, WA 98109, USA; Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Philip D Greenberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Mail Stop D3-100, P.O. Box 19024, Seattle, WA 98109, USA; Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|