1
|
Crespo-Avilan GE, Hernandez-Resendiz S, Ramachandra CJ, Ungureanu V, Lin YH, Lu S, Bernhagen J, El Bounkari O, Preissner KT, Liehn EA, Hausenloy DJ. Metabolic reprogramming of immune cells by mitochondrial division inhibitor-1 to prevent post-vascular injury neointimal hyperplasia. Atherosclerosis 2024; 390:117450. [PMID: 38266625 DOI: 10.1016/j.atherosclerosis.2024.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND AIMS New treatments are needed to prevent neointimal hyperplasia that contributes to post-angioplasty and stent restenosis in patients with coronary artery disease (CAD) and peripheral arterial disease (PAD). We investigated whether modulating mitochondrial function using mitochondrial division inhibitor-1 (Mdivi-1) could reduce post-vascular injury neointimal hyperplasia by metabolic reprogramming of macrophages from a pro-inflammatory to anti-inflammatory phenotype. METHODS AND RESULTS In vivo Mdivi-1 treatment of Apoe-/- mice fed a high-fat diet and subjected to carotid-wire injury decreased neointimal hyperplasia by 68%, reduced numbers of plaque vascular smooth muscle cells and pro-inflammatory M1-like macrophages, and decreased plaque inflammation, endothelial activation, and apoptosis, when compared to control. Mdivi-1 treatment of human THP-1 macrophages shifted polarization from a pro-inflammatory M1-like to an anti-inflammatory M2-like phenotype, reduced monocyte chemotaxis and migration to CCL2 and macrophage colony stimulating factor (M-CSF) and decreased secretion of pro-inflammatory mediators. Finally, treatment of pro-inflammatory M1-type-macrophages with Mdivi-1 metabolically reprogrammed them to an anti-inflammatory M2-like phenotype by inhibiting oxidative phosphorylation and attenuating the increase in succinate levels and correcting the decreased levels of arginine and citrulline. CONCLUSIONS We report that treatment with Mdivi-1 inhibits post-vascular injury neointimal hyperplasia by metabolic reprogramming macrophages towards an anti-inflammatory phenotype thereby highlighting the therapeutic potential of Mdivi-1 for preventing neointimal hyperplasia and restenosis following angioplasty and stenting in CAD and PAD patients.
Collapse
Affiliation(s)
- Gustavo E Crespo-Avilan
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany; Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Sauri Hernandez-Resendiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Chrishan J Ramachandra
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Victor Ungureanu
- National Institute of Pathology, "Victor Babes", Bucharest, Romania
| | - Ying-Hsi Lin
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Shengjie Lu
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Munich Heart Alliance, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany; Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Elisa A Liehn
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; National Institute of Pathology, "Victor Babes", Bucharest, Romania; Institute for Molecular Medicine, University of South Denmark, Odense, Denmark.
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, WC1E 6BT, UK; Yong Loo Lin School of Medicine, National University Singapore, Singapore.
| |
Collapse
|
2
|
Zhao L, Ma D, Wang L, Su X, Feng L, Zhu L, Chen Y, Hao Y, Wang X, Feng J. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins. Front Immunol 2023; 14:1301051. [PMID: 38143759 PMCID: PMC10739339 DOI: 10.3389/fimmu.2023.1301051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.
Collapse
Affiliation(s)
| | - Di Ma
- Bethune First Hospital, Jilin University, Changchun, China
| | - LiJuan Wang
- Bethune First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
López-Acosta O, Ruiz-Ramírez A, Barrios-Maya MÁ, Alarcon-Aguilar J, Alarcon-Enos J, Céspedes Acuña CL, El-Hafidi M. Lipotoxicity, glucotoxicity and some strategies to protect vascular smooth muscle cell against proliferative phenotype in metabolic syndrome. Food Chem Toxicol 2023; 172:113546. [PMID: 36513245 DOI: 10.1016/j.fct.2022.113546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a risk factor for the development of cardiovascular disease (CVD) and atherosclerosis through a mechanism that involves vascular smooth muscle cell (VSMC) proliferation, lipotoxicity and glucotoxicity. Several molecules found to be increased in MetS, including free fatty acids, fatty acid binding protein 4, leptin, resistin, oxidized lipoprotein particles, and advanced glycation end products, influence VSMC proliferation. Most of these molecules act through their receptors on VSMCs by activating several signaling pathways associated with ROS generation in various cellular compartments. ROS from NADPH-oxidase and mitochondria have been found to promote VSMC proliferation and cell cycle progression. In addition, most of the natural or synthetic substances described in this review, including pharmaceuticals with hypoglycemic and hypolipidemic properties, attenuate VSMC proliferation by their simultaneous modulation of cell signaling and their scavenging property due to the presence of a phenolic ring in their structure. This review discusses recent data in the literature on the role that several MetS-related molecules and ROS play in the change from contractile to proliferative phenotype of VSMCs. Hence the importance of proposing an appropriate strategy to prevent uncontrolled VSMC proliferation using antioxidants, hypoglycemic and hypolipidemic agents.
Collapse
Affiliation(s)
- Ocarol López-Acosta
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Angélica Ruiz-Ramírez
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Miguel-Ángel Barrios-Maya
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Depto. de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| | - Julio Alarcon-Enos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile
| | - Carlos L Céspedes Acuña
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile.
| | - Mohammed El-Hafidi
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico.
| |
Collapse
|
4
|
Riascos-Bernal DF, Maira A, Sibinga NES. The Atypical Cadherin FAT1 Limits Mitochondrial Respiration and Proliferation of Vascular Smooth Muscle Cells. Front Cardiovasc Med 2022; 9:905717. [PMID: 35647082 PMCID: PMC9130956 DOI: 10.3389/fcvm.2022.905717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
Smooth muscle cells contribute to cardiovascular disease, the leading cause of death worldwide. The capacity of these cells to undergo phenotypic switching in mature arteries of the systemic circulation underlies their pathogenic role in atherosclerosis and restenosis, among other vascular diseases. Growth factors and cytokines, extracellular matrix components, regulation of gene expression, neuronal influences, and mechanical forces contribute to smooth muscle cell phenotypic switching. Comparatively little is known about cell metabolism in this process. Studies of cancer and endothelial cell biology have highlighted the importance of cellular metabolic processes for phenotypic transitions that accompany tumor growth and angiogenesis. However, the understanding of cell metabolism during smooth muscle cell phenotypic modulation is incipient. Studies of the atypical cadherin FAT1, which is strongly upregulated in smooth muscle cells in response to arterial injury, suggest that it has important and distinctive functions in this context, mediating control of both smooth muscle cell mitochondrial metabolism and cell proliferation. Here we review the progress made in understanding how FAT1 affects the smooth muscle cell phenotype, highlighting the significance of FAT1 as a processed protein and unexpected regulator of mitochondrial respiration. These mechanisms suggest how a transmembrane protein may relay signals from the extracellular milieu to mitochondria to control metabolic activity during smooth muscle cell phenotypic switching.
Collapse
Affiliation(s)
- Dario F Riascos-Bernal
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alishba Maira
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Oxidative phosphorylation promotes vascular calcification in chronic kidney disease. Cell Death Dis 2022; 13:229. [PMID: 35277475 PMCID: PMC8917188 DOI: 10.1038/s41419-022-04679-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 01/20/2023]
Abstract
Metabolism has been reported to associate with the progression of vascular diseases. However, how vascular calcification in chronic kidney disease (CKD) is regulated by metabolic status remains poorly understood. Using a model of 5/6 nephrectomy, we demonstrated that the aortic tissues of CKD mice had a preference for using oxidative phosphorylation (OXPHOS). Both high phosphate and human uremic serum-stimulated vascular smooth muscle cells (VSMCs) had enhanced mitochondrial respiration capacity, while the glycolysis level was not significantly different. Besides, 2-deoxy-d-glucose (2-DG) exacerbated vascular calcification by upregulating OXPHOS. The activity of cytochrome c oxidase (COX) was higher in the aortic tissue of CKD mice than those of sham-operated mice. Moreover, the expression levels of COX15 were higher in CKD patients with aortic arch calcification (AAC) than those without AAC, and the AAC scores were correlated with the expression level of COX15. Suppressing COX sufficiently attenuated vascular calcification. Our findings verify the relationship between OXPHOS and calcification, and may provide potential therapeutic approaches for vascular calcification in CKD.
Collapse
|
6
|
Ishii S, Ashino T, Fujimori H, Numazawa S. Reactive sulfur species inhibit the migration of PDGF-treated vascular smooth muscle cells by blocking the reactive oxygen species-regulated Akt signaling pathway. Free Radic Res 2021; 55:186-197. [PMID: 33641584 DOI: 10.1080/10715762.2021.1887485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular smooth muscle cell (VSMC) migration contributes to vascular remodeling after injury, whereas oxidative stress generated through dysfunctional redox homeostasis induces hypermigration, leading to arteriosclerosis. Platelet-derived growth factor (PDGF)-induced reactive oxygen species (ROS) serve as intracellular signaling molecules in VSMCs. Reactive sulfur species (RSS) may serve as a biological defense system because of the antioxidative properties of highly nucleophilic sulfane sulfur. However, insufficient information is available on its function in PDGF-induced VSMC migration. Here we show that PDGF significantly increased the levels of intracellular sulfane sulfur and that intracellular sulfane sulfur donors, donor 5a and Na2S4, inhibited the increase in ROS levels in PDGF-treated VSMCs and inhibited their migration. Consistent with the migration results, sulfane sulfur donors inhibited Akt phosphorylation, a downstream signaling molecule in the PDGF cascade, without affecting the autophosphorylation of PDGF receptor-β. Further, sulfane sulfur donors inhibited vinculin and paxillin recruitment to the leading edge of VSMCs in response to PDGF to decrease focal adhesion formation. These findings suggest that RSS are required for PDGF-stimulated VSMC migration through the regulation of the ROS-regulated Akt pathway, which may contribute to focal adhesion formation. Our findings provide insight into RSS as novel regulators of vascular redox homeostasis.
Collapse
Affiliation(s)
- Shunichi Ishii
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Takashi Ashino
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Hiroki Fujimori
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| |
Collapse
|
7
|
Shi J, Yang Y, Cheng A, Xu G, He F. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol 2020; 319:H613-H631. [PMID: 32762559 DOI: 10.1152/ajpheart.00220.2020] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are the fundamental component of the medial layer of arteries and are essential for arterial physiology and pathology. It is becoming increasingly clear that VSMCs can alter their metabolism to fulfill the bioenergetic and biosynthetic requirements. During vascular injury, VSMCs switch from a quiescent "contractile" phenotype to a highly migratory and proliferative "synthetic" phenotype. Recent studies have found that the phenotype switching of VSMCs is driven by a metabolic switch. Metabolic pathways, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, have distinct, indispensable roles in normal and dysfunctional vasculature. VSMCs metabolism is also related to the metabolism of endothelial cells. In the present review, we present a brief overview of VSMCs metabolism and how it regulates the progression of several vascular diseases, including atherosclerosis, systemic hypertension, diabetes, pulmonary hypertension, vascular calcification, and aneurysms, and the effect of the risk factors for vascular disease (aging, cigarette smoking, and excessive alcohol drinking) on VSMC metabolism to clarify the role of VSMCs metabolism in the key pathological process.
Collapse
Affiliation(s)
- Jia Shi
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anying Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Wu M, Chen W, Zhang S, Huang S, Zhang A, Zhang Y, Jia Z. Rotenone protects against β-cell apoptosis and attenuates type 1 diabetes mellitus. Apoptosis 2020; 24:879-891. [PMID: 31485878 DOI: 10.1007/s10495-019-01566-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is caused by pancreatic β-cell dysfunction and apoptosis, with consequent severe insulin deficiency. Thus, β-cell protection may be a primary target in the treatment of T1DM. Evidence has demonstrated that defective mitochondrial function plays an important role in pancreatic β-cell dysfunction and apoptosis; however, the fundamental effect of mitochondrial complex I action on β-cells and T1DM remains unclear. In the current study, the pancreas protective effect of complex I inhibitor rotenone (ROT) and its potential mechanism were assessed in a streptozotocin (STZ)-induced mouse model of T1DM and in cultured mouse pancreatic β-cell line, Min6. ROT treatment exerted a hypoglycemic effect, restored the insulin level, and decreased inflammation and cell apoptosis in the pancreas. In vitro experiments also showed that ROT decreased STZ- and inflammatory cytokines-induced β-cell apoptosis. These protective effects were accompanied by attenuation of reactive oxygen species, increased mitochondrial membrane potential, and upregulation of transcriptional coactivator PPARα coactivator 1α (PGC-1α)-controlled mitochondrial biogenesis. These findings suggest that mitochondrial complex I inhibition may represent a promising strategy for β-cell protection in T1DM.
Collapse
Affiliation(s)
- Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China.,State Key Laboratory of Kidney Diseases, Fuxing Road #28, Haidian District, Beijing, 100853, China
| | - Weiyi Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China
| | - Shengnan Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China. .,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, Nanjing, 210008, China. .,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, Nanjing, 210029, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, Nanjing, 210008, China.
| |
Collapse
|
9
|
Seguin A, Jia X, Earl AM, Li L, Wallace J, Qiu A, Bradley T, Shrestha R, Troadec MB, Hockin M, Titen S, Warner DE, Dowdle PT, Wohlfahrt ME, Hillas E, Firpo MA, Phillips JD, Kaplan J, Paw BH, Barasch J, Ward DM. The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice. J Biol Chem 2020; 295:11002-11020. [PMID: 32518166 DOI: 10.1074/jbc.ra120.013229] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Indexed: 01/31/2023] Open
Abstract
Mitochondrial iron import is essential for iron-sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2 -/- mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2 -/- mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1 -/-/Mfrn2 -/- bone marrow-derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.
Collapse
Affiliation(s)
- Alexandra Seguin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Xuan Jia
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Aubree M Earl
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Liangtao Li
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jared Wallace
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Andong Qiu
- Columbia University, New York, New York, USA
| | - Thomas Bradley
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Rishna Shrestha
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Marie-Bérengère Troadec
- University Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France.,CHRU Brest, Service of Genetics, Laboratory of Chromosome Genetics, Brest, France
| | - Matt Hockin
- Department of Human Genetics, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Simon Titen
- Department of Human Genetics, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Dave E Warner
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - P Tom Dowdle
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Martin E Wohlfahrt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elaine Hillas
- Department of General Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Matthew A Firpo
- Department of General Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John D Phillips
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jerry Kaplan
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Barry H Paw
- Harvard Medical School, Children's Hospital, Boston, Massachusetts, USA
| | | | - Diane M Ward
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Chen Z, Wu Q, Yan C, Du J. COL6A1 knockdown suppresses cell proliferation and migration in human aortic vascular smooth muscle cells. Exp Ther Med 2019; 18:1977-1984. [PMID: 31410158 PMCID: PMC6676143 DOI: 10.3892/etm.2019.7798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) migration is an important pathophysiological signature of neointimal hyperplasia. The aim of the present study was to investigate the effects of collagen type VI α1 chain (COL6A1) on VSMC migration. COL6A1 expression was silenced in platelet-derived growth factor (PDGF-BB)-stimulated VSMCs. Cell counting kit-8, wound healing and Transwell assays were used to measure cell viability, migration and invasion, respectively. Reverse transcription-quantitative PCR and western blot analysis were performed to analyze the expression of factors associated with metastasis. COL6A1 silencing attenuated PDGF-BB-induced increases in cell viability and invasive abilities of VSMCs, in addition to partially reversing the increased expression of fibronectin (FN), matrix metalloproteinase (MMP)-2 and MMP-9 induced by PDGF-BB stimulation. The silencing of COL6A also overturned PDGF-BB-induced reduction in tissue inhibitor of metalloproteinase 2 expression in VSMCs. PDGF-BB activated the AKT/mTOR pathway, which was also inhibited by COL6A1 knockdown. Taken together, these findings suggest that COL6A1 silencing inhibited VSMC viability and migration by inhibiting AKT/mTOR activation.
Collapse
Affiliation(s)
- Zongxiang Chen
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Qingjian Wu
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Chengjun Yan
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Juan Du
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|