1
|
Wang Z, Sun W, Zhang K, Ke X, Wang Z. New insights into the relationship of mitochondrial metabolism and atherosclerosis. Cell Signal 2025; 127:111580. [PMID: 39732307 DOI: 10.1016/j.cellsig.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Zexun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China
| | - Wangqing Sun
- Department of Radiology, Yixing Tumor Hospital, Yixing 214200, China
| | - Kai Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Xianjin Ke
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
2
|
Zhang P, Zou P, Huang X, Zeng X, Liu S, Liu Y, Shao L. Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:469-478. [PMID: 39198227 PMCID: PMC11361999 DOI: 10.4196/kjpp.2024.28.5.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 09/01/2024]
Abstract
Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Pengtao Zou
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Xiao Huang
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Xianghui Zeng
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, China
| | - Songtao Liu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Yuanyuan Liu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| |
Collapse
|
3
|
Ding L, Liu GL, Lu L, Ge L, Wang JY. circ_CSNK1E modulates airway smooth muscle cells proliferation and migration via miR-34a-5p/VAMP2 axis in asthma. Cell Signal 2022; 95:110340. [PMID: 35483563 DOI: 10.1016/j.cellsig.2022.110340] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Excessive proliferation and migration of airway smooth muscle cells (ASMCs) directly lead to airway remodeling in asthma. However, the role of circular RNAs (circRNAs) in airway remodeling remains unclear. This study aimed to investigate the regulatory role and mechanism of circ_CSNK1E in ASMCs proliferation and migration. METHODS In this study, RNA-sequencing was used to analyze cicRNAs expression in asthma samples. ASMCs were treated with 25 ng/mL PDGF-BB to establish a model of asthma in vitro. Then, we used RT-qPCR to assess circRNAs, microRNAs (miRNAs) and messenger RNAs (mRNAs) expression. Besides, CCK-8, colony formation, wound healing and transwell chamber assays were carried out to explore cell proliferation and migration. Subcellular localization assay was used to detect the location of circRNA. Next, bioinformatics, luciferase reporter and RIP assays were performed to evaluate the relationship among circ_CSNK1E, miRNA-34a-5p and VAMP2. RESULTS circ_CSNK1E expression was found to be significantly up-regulated in asthma samples and PDGF-BB-induced ASMCs. Functional experiments revealed that inhibition of circRNA_CSNK1E suppressed proliferation and migration of ASMCs stimulated by PDGF-BB. Next, we found that circRNA_CSNK1E served as a sponge for miR-34a-5p in ASMCs, and miR-34a-5p mimic suppressed proliferation and migration of ASMCs. Moreover, VAMP2 was confirmed as a direct target of miR-34a-5p. At last, inhibition of circRNA_CSNK1E suppressed proliferation and migration of ASMCs stimulated by PDGF-BB through miR-34a-5p/VAMP2 axis. CONCLUSION Collectively, these findings clarified the importance of circ_CSNK1E/miRNA-34a-5p/VAMP2 axis for the proliferation and migration of ASMCs. These indicated that inhibition of circ_CSNK1E might be a potential target for the treatment of airway remodeling in asthma.
Collapse
Affiliation(s)
- Ling Ding
- Department of Pediatrics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, No.321. Zhongshan Road, 210008 Nanjing, Jiangsu, China; Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, No. 298, Nanpu Road, 210031 Nanjing, Jiangsu, China
| | - Guang-Ling Liu
- Department of Pediatrics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, No.321. Zhongshan Road, 210008 Nanjing, Jiangsu, China
| | - Lu Lu
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, No. 262. Zhongshan North Road, 210003 Nanjing, Jiangsu, China
| | - Lei Ge
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, No. 262. Zhongshan North Road, 210003 Nanjing, Jiangsu, China
| | - Jin-Ya Wang
- Department of Pediatrics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, No.321. Zhongshan Road, 210008 Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Xing G, Li D, Woo AYH, Zhi Z, Ji L, Xing R, Lv H, He B, An H, Zhao H, Lin B, Pan L, Cheng M. Discovery of a Highly Selective β 2-Adrenoceptor Agonist with a 2-Amino-2-phenylethanol Scaffold as an Oral Antiasthmatic Agent. J Med Chem 2022; 65:5514-5527. [PMID: 35360904 DOI: 10.1021/acs.jmedchem.1c02006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asthma patients in resource-poor countries cannot obtain adequate basic asthma medications because most asthma medications are supplied as inhalants. An alternative approach is to create oral antiasthmatic drugs with high β2/β1-selectivity, which should reduce treatment costs. In this study, we designed a cohort of compounds 1 using 2-(4-amino-3-chloro-5-(trifluoromethyl)phenyl)-2-(tert-butylamino)ethan-1-ol hydrogen chloride (1a) as the lead compound with an aim to expand the library of compounds possessing the 2-amino-2-phenylethanol scaffold. Structure-activity relationship studies on these compounds revealed that compounds created showed remarkable β2 selectivity compared to isoproterenol and gave additional insights on the rational design of β2-adrenoceptor agonists. Moreover, 1a was found as the best candidate compound showing the greatest potential for drug development. Cell-based assays showed that 1a was about 10 times more selective than salbutamol toward the β2-adrenoceptor. Moreover, 1a exhibited good oral bioavailability and low acute oral toxicity. These data reveal 1a as an oral antiasthmatic agent.
Collapse
Affiliation(s)
- Gang Xing
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dahong Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Anthony Yiu-Ho Woo
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhengxing Zhi
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Ji
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruijuan Xing
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hailiang Lv
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin He
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui An
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haiyan Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Pan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Xing G, Woo AYH, Pan L, Lin B, Cheng MS. Recent Advances in β 2-Agonists for Treatment of Chronic Respiratory Diseases and Heart Failure. J Med Chem 2020; 63:15218-15242. [PMID: 33213146 DOI: 10.1021/acs.jmedchem.0c01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β2-Adrenoceptor (β2-AR) agonists are widely used as bronchodilators. The emerge of ultralong acting β2-agonists is an important breakthrough in pulmonary medicine. In this review, we will provide mechanistic insights into the application of β2-agonists in asthma, chronic obstructive pulmonary disease (COPD), and heart failure (HF). Recent studies in β-AR signal transduction have revealed opposing functions of the β1-AR and the β2-AR on cardiomyocyte survival. Thus, β2-agonists and β-blockers in combination may represent a novel strategy for HF management. Allosteric modulation and biased agonism at the β2-AR also provide a theoretical basis for developing drugs with novel mechanisms of action and pharmacological profiles. Overlap of COPD and HF presents a substantial clinical challenge but also a unique opportunity for evaluation of the cardiovascular safety of β2-agonists. Further basic and clinical research along these lines can help us develop better drugs and innovative strategies for the management of these difficult-to-treat diseases.
Collapse
Affiliation(s)
- Gang Xing
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Anthony Yiu-Ho Woo
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Pan
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mao-Sheng Cheng
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|