1
|
Zhao X, Dong Q, Zhu H, Ding Y, Deng D, Miao H, Tan Y, Ge L. Methuselah-like 2 mediated 20-hydroxyecdysone (20E) signaling regulates molting and fecundity in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). PEST MANAGEMENT SCIENCE 2025. [PMID: 39980407 DOI: 10.1002/ps.8722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) are very promising as the targets of endogenous neuropeptides/neuromodulators that, upon binding to receptors, induce profound changes in insect physiology. The Methuselan/Methuselan-like subfamily of GPCRs is reported to be associated with longevity and stress resistance. A previous study showed the fungicide jingangmycin-induced expression of Mthl2 and enhanced stress resistance in Nilaparvata lugens. However, the other physiological functions of Mthl2 remain unelucidated. RESULTS The Mthl2 was highly expressed before molting and decreased after that until the next ecdysis, showing a cyclical pattern related to molting behavior and predominantly distributed in cuticle-producing and reproductive tissues in N. lugens. Silencing Mthl2 by RNAi in nymphs disrupted the synthesis of 20E, caused downregulation of the 20E signaling-related genes, and further affected the transcription of cuticular proteins. Moreover, it led to the malformation of the integument structure and a declined emergence rate, whereas exogenous 20E could rescue the declined emergence rate caused by knockdown of Mthl2. Furthermore, depletion of Mthl2 through RNAi in the N. lugens nymphal stage influenced the development of the ovaries and fecundity in female adults. The soluble protein content in reproductive tissues, the protein and transcript levels of Vitellogenin (Vg) were significantly decreased after silencing of Mthl2, ultimately leading to a decline in the number of offspring with an obviously transgenerational consequence. CONCLUSION The current study revealed the physiological functions of Mthl2 in molting and fecundity of N. lugens, which can be used as an RNAi-based insecticide discovery to control this pest. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xudong Zhao
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Qiaoqiao Dong
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Haowen Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yuting Ding
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Di Deng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Hong Miao
- College of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - LinQuan Ge
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhang XQ, Jin L, Guo WC, Fu KY, Li GQ. RNA Interference-Mediated Suppression of Ecdysone Signaling Inhibits Choriogenesis in Two Coleoptera Species. Int J Mol Sci 2024; 25:4555. [PMID: 38674140 PMCID: PMC11050585 DOI: 10.3390/ijms25084555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
During choriogenesis in insects, chorion (eggshell) is formed by surrounding follicular epithelial cells in ovarioles. However, the regulatory endocrine factor(s) activating choriogenesis and the effect of chemical components on eggshell deserve further exploration. In two representative coleopterans, a coccinellid Henosepilachna vigintioctopunctata and a chrysomelid Leptinotarsa decemlineata, genes encoding the 20-hydroxyecdysone (20E) receptor heterodimer, ecdysone receptor (EcR) and ultraspiracle (USP), and two chitin biosynthesis enzymes UDP-N-acetylglucosamine pyrophosphorylase (UAP) and chitin synthase (ChS1), were highly expressed in ovaries of the young females. RNA interference (RNAi)-aided knockdown of either HvEcR or Hvusp in H. vigintioctopunctata inhibited oviposition, suppressed the expression of HvChS1, and lessened the positive signal of Calcofluor staining on the chorions, which suggests the reduction of a chitin-like substance (CLS) deposited on eggshells. Similarly, RNAi of LdEcR or Ldusp in L. decemlineata constrained oviposition, decreased the expression of LdUAP1 and LdChS1, and reduced CLS contents in the resultant ovaries. Knockdown of LdUAP1 or LdChS1 caused similar defective phenotypes, i.e., reduced oviposition and CLS contents in the L. decemlineata ovaries. These results, for the first time, indicate that 20E signaling activates choriogenesis in two coleopteran species. Moreover, our findings suggest the deposition of a CLS on the chorions.
Collapse
Affiliation(s)
- Xiao-Qing Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.-Q.Z.); (L.J.)
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.-Q.Z.); (L.J.)
| | - Wen-Chao Guo
- Key Laboratory of Intergraded Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture, Urumqi 830091, China; (W.-C.G.); (K.-Y.F.)
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Kai-Yun Fu
- Key Laboratory of Intergraded Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture, Urumqi 830091, China; (W.-C.G.); (K.-Y.F.)
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.-Q.Z.); (L.J.)
| |
Collapse
|
3
|
Benrabaa S, Orchard I, Lange AB. A critical role for ecdysone response genes in regulating egg production in adult female Rhodnius prolixus. PLoS One 2023; 18:e0283286. [PMID: 36940230 PMCID: PMC10027210 DOI: 10.1371/journal.pone.0283286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023] Open
Abstract
Ecdysteroids control ovary growth and egg production through a complex gene hierarchy. In the female Rhodnius prolixus, a blood-gorging triatomine and the vector of Chagas disease, we have identified the ecdysone response genes in the ovary using transcriptomic data. We then quantified the expression of the ecdysone response gene transcripts (E75, E74, BR-C, HR3, HR4, and FTZ-F1) in several tissues, including the ovary, following a blood meal. These results confirm the presence of these transcripts in several tissues in R. prolixus and show that the ecdysone response genes in the ovary are mostly upregulated during the first three days post blood meal (PBM). Knockdown of E75, E74, or FTZ-F1 transcripts using RNA interference (RNAi) was used to understand the role of the ecdysone response genes in vitellogenesis and egg production. Knockdown significantly decreases the expression of the transcripts for the ecdysone receptor and Halloween genes in the fat body and the ovaries and reduces the titer of ecdysteroid in the hemolymph. Knockdown of each of these transcription factors typically alters the expression of the other transcription factors. Knockdown also significantly decreases the expression of vitellogenin transcripts, Vg1 and Vg2, in the fat body and ovaries and reduces the number of eggs produced and laid. Some of the laid eggs have an irregular shape and smaller volume, and their hatching rate is decreased. Knockdown also influences the expression of the chorion gene transcripts Rp30 and Rp45. The overall effect of knockdown is a decrease in number of eggs produced and a severe reduction in number of eggs laid and their hatching rate. Clearly, ecdysteroids and ecdysone response genes play a significant role in reproduction in R. prolixus.
Collapse
Affiliation(s)
- Samiha Benrabaa
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
4
|
Zhang Y, Zheng S, Li Y, Jiang X, Gao H, Lin X. The Function of Nilaparvata lugens (Hemiptera: Delphacidae) E74 and Its Interaction With βFtz-F1. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:15. [PMID: 35738261 PMCID: PMC9225820 DOI: 10.1093/jisesa/ieac041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Drosophila E74 is an early gene located in the polytene chromosome 74EF puff position. E74 controls the production of late genes, indicating that it plays a crucial role in this cascade model. Nilaparvata lugens E74 is closely related to Diaphorina citri, Bemisia tabaci, and Laodelphax striatellus. After downregulating E74, molting, and nymphal mortality were increased, and ovarian development was delayed. Moreover, the expression of Vg was reduced at the transcriptional level, as measured by qRT-PCR, and the content of Vg protein was reduced, as detected by Western blotting. After downregulating E74, the expression of hormone-related genes, including Tai, βFtz-F1, Met, Kr-h1, UspA, UspB, E93, and Br, was changed. The expression of E74 was significantly decreased after downregulating hormone-related genes. When the expression of E74 and βFtz-F1 was downregulated together, nymph mortality and molting mortality were higher than those when E74 or βFtz-F1 was downregulated alone. Thus, E74 probably interacts with βFtz-F1 at the genetic level. In summary, this study showed that E74 plays a crucial role in the development, metamorphosis and reproduction of N. lugens, possibly via the interaction with βFtz-F1 at the genetic level. This study provides a basis for the development of new target-based pesticides and new methods for the effective control of N. lugens.
Collapse
Affiliation(s)
| | | | - Yan Li
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xiaojuan Jiang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Han Gao
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | | |
Collapse
|
5
|
Hu K, Fu B, Wang C, Liu J, Tang Y, Zhang W, Zhu J, Li Y, Pan Q, Liu F. The role of 20E biosynthesis relative gene Shadow in the reproduction of the predatory mirid bug, Cyrtorhinus lividipennis (Hemiptera: Miridae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21854. [PMID: 34783381 DOI: 10.1002/arch.21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Cytorhinus lividipennis is a natural enemy of rice planthoppers and leafhoppers. Improving the fecundity of C. lividipennis will be helpful to improve its control effect on pests. However, little is known about the hormonal regulatory mechanism of reproduction in C. lividipennis. In the current study, we examined the role of 20-hydroxyecdysone (20E) biosynthesis relative gene Shadow in the reproduction of C. lividipennis. The complementary DNA sequence of ClSad is 2018 -bp in length with an open reading frame of 1398-bp encoding 465 amino acid residues. ClSad was readily detected in nymphal and adult stages, and highly expressed in the adult stage. ClSad was highly expressed in the midgut and ovaries of adult females. Moreover, RNA interference-mediated knockdown of ClSad reduced the 20E titers and ClVg transcript level, resulting in fewer fully developed eggs and a decrease in the number of eggs laid by dsSad-injected adult females within 15 days. These results suggest that ClSad plays a critical role in the reproduction of C. lividipennis. The present study provides insights into the molecular mechanism of the ClSad gene for the reproduction of C. lividipennis.
Collapse
Affiliation(s)
- Kui Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baobao Fu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuchu Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqi Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingying Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wendan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qinjian Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Zeng BP, Kang K, Wang HJ, Pan BY, Xu CD, Tang B, Zhang DW. Effect of glycogen synthase and glycogen phosphorylase knockdown on the expression of glycogen- and insulin-related genes in the rice brown planthopper Nilaparvata lugens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 33:100652. [PMID: 31927198 DOI: 10.1016/j.cbd.2019.100652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
Nilaparvata lugens is a serious threat to rice growth. Glycogen metabolism is one of the important physiological processes of insects, which is mainly regulated by glycogen synthase (GS) and glycogen phosphorylase (GP). In the present study, trehalose content was significantly reduced at 72 h after NlGP and NlGS knockdown, whereas glucose content was significantly increased at both 48 h and 72 h after GS knockdown. RNAi combined with RNA-Seq was used to identify NlGP- and NlGS-related pathways and genes in N. lugens. A total of 593 genes were up-regulated and 5969 genes were down-regulated after NlGP and NlGS knockdown, respectively. Moreover, the NlGS-knockdown group was mapped to 10,967 pathways, whereas the NlGP-knockdown group was mapped to 7948 pathways, and the greatest differences between the groups were associated with carbohydrate, lipid, amino acid and energy metabolism. Meanwhile, 1800, 1217, and 1211 transcripts in the NlGP-knockdown group and 2511, 1666, and 1727 transcripts in the NlGS-knockdown group were involved in bioprocess, cellular ingredients and molecular function, respectively. Almost all these genes were down-regulated by either NlGP or NlGS knockdown, with significant down-regulation of the 6-trehalose phosphate synthase (TPS), trehalase (TRE), GS, GP, phosphoacetylglucosamine mutase (PGM, n = 2), Insulin receptors (InRs) and insulin-like peptides (Ilps) genes. These results have demonstrated that RNAi-mediated NlGP and NlGS knockdown could lead to content of trehalose and glucose out of balance, but have no obvious effect on glycogen content, and have suggested that GS plays more complex role in other metabolism pathway of N. lugens.
Collapse
Affiliation(s)
- Bo-Ping Zeng
- School of Biological and Agricultural Science and Technology, Key Laboratory of Protection and Utilization of Animal Resource in Chishui River Basin, Zunyi Normal University, Zunyi, Guizhou 563006, PR China
| | - Kui Kang
- School of Biological and Agricultural Science and Technology, Key Laboratory of Protection and Utilization of Animal Resource in Chishui River Basin, Zunyi Normal University, Zunyi, Guizhou 563006, PR China
| | - Hui-Juan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, PR China
| | - Bi-Ying Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, PR China
| | - Cai-Di Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, PR China
| | - Bin Tang
- School of Biological and Agricultural Science and Technology, Key Laboratory of Protection and Utilization of Animal Resource in Chishui River Basin, Zunyi Normal University, Zunyi, Guizhou 563006, PR China; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, PR China
| | - Dao-Wei Zhang
- School of Biological and Agricultural Science and Technology, Key Laboratory of Protection and Utilization of Animal Resource in Chishui River Basin, Zunyi Normal University, Zunyi, Guizhou 563006, PR China.
| |
Collapse
|
7
|
Wang X, Wang W, Zhang W, Li J, Cui F, Qiao L. Immune function of an angiotensin-converting enzyme against Rice stripe virus infection in a vector insect. Virology 2019; 533:137-144. [PMID: 31247402 PMCID: PMC7127076 DOI: 10.1016/j.virol.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Angiotensin-converting enzyme (ACE) plays diverse roles in the animal kingdom. However, whether ACE plays an immune function against viral infection in vector insects is unclear. In this study, an ACE gene (LsACE) from the small brown planthopper was found to respond to Rice stripe virus (RSV) infection. The enzymatic activities of LsACE were characterized at different pH and temperature. Twenty planthopper proteins were found to interact with LsACE. RSV infection significantly upregulated LsACE expression in the testicle and fat body. When the expression of LsACE in viruliferous planthoppers was inhibited, the RNA level of the RSV SP gene was upregulated 2-fold in planthoppers, and all RSV genes showed higher RNA levels in the rice plants consumed by these planthoppers, leading to a higher viral infection rate and disease rating index. These results indicate that LsACE plays a role in the immune response against RSV transmission by planthoppers.
Collapse
Affiliation(s)
- Xue Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzhong Zhang
- Department of Cardiology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, Shandong, 266001, China
| | - Jing Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Luqin Qiao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|