1
|
Liu S, Gao F, Wang R, Li W, Wang S, Zhang X. Molecular Characteristics of the Fatty-Acid-Binding Protein (FABP) Family in Spirometra mansoni-A Neglected Medical Tapeworm. Animals (Basel) 2023; 13:2855. [PMID: 37760255 PMCID: PMC10525997 DOI: 10.3390/ani13182855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The plerocercoid larva of the tapeworm Spirometra mansoni can parasitize humans and animals, causing serious parasitic zoonosis. The molecular characteristics and adaptive parasitism mechanism of Spirometra tapeworms are still unknown. In this study, 11 new members of the fatty-acid-binding protein (FABP) family were characterized in S. mansoni. A clustering analysis showed 11 SmFABPs arranged into two groups, and motif patterns within each group had similar organizations. RT-qPCR showed that SmFABPs were highly expressed in the adult stage, especially in gravid proglottid. A high genetic diversity of SmFABPs and relative conservation of FABPs in medical platyhelminthes were observed in the phylogenetic analysis. Immunolocalization revealed that natural SmFABP is mainly located in the tegument and parenchymal tissue of the plerocercoid and the uterus, genital pores, and cortex of adult worms. rSmFABP can build a more stable holo form when binding with palmitic acid to protect the hydrolytic sites of the protein. A fatty acid starvation induction test suggested that SmFABP might be involved in fatty acid absorption, transport, and metabolism in S. mansoni. The findings in this study will lay the foundation to better explore the underlying mechanisms of FABPs involved in Spirometra tapeworms as well as related taxa.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (F.G.); (R.W.); (W.L.); (S.W.)
| |
Collapse
|
2
|
Taşbozan O, Erbaş C, Bayır M, Özdemir E, Arslan G, Bayır A. Fatty acid-binding protein genes in gilthead seabream: molecular cloning and nutritional regulation under low water temperatures. JOURNAL OF FISH BIOLOGY 2023; 102:816-828. [PMID: 36647813 DOI: 10.1111/jfb.15319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The molecular characteristics and tissue disruption of 10 fatty acid-binding protein (fabp) genes in gilthead seabream (Sparus aurata) were investigated, and their expression levels were found in the fish fed diets with different vegetable oil (VO) sources, which may explore the potential function of fabp genes in S. aurata. For this purpose, the open reading frames of fabp genes involved in the transport and ß-oxidation of fatty acids (FA) were molecularly cloned and characterized. S. aurata was then exposed to a two-staged feeding trial (the grow-out period following a wash-out period) at low water temperatures. In the grow-out period, the fish were fed diets containing 50% and 100% ratios of various VOs for 60 days, and in the wash-out period, the fish were fed a diet containing 100% fish oil (FO) for 30 days. It has been determined that (a) S. aurata and vertebrate fabp/FABP genes are orthologues; (b) spatio-temporal differences in tissue-specific patterns of fabp genes differ importantly; for instance, the difference between the highest and lowest values reaches 13 × 105 -fold in the fabp10a; and (c) VO-based diets upregulated fabp transcript levels in the liver and muscle with some exceptions, such as liver fabp11a and muscle fabp7a. Gene expressions of only the hepatic fabp7b and fabp10a genes were diminished at the end of the wash-out period. In this study, the authors provide further evidence that dietary FAs affect fabp mRNA expressions in S. aurata. This might be useful in the nutritional control of fabp genes to maintain lipid homeostasis in marine fish fed VO-based diets at low water temperatures.
Collapse
Affiliation(s)
- Oğuz Taşbozan
- Faculty of Fisheries, Department of Aquaculture, Çukurova University, Adana, Turkey
| | - Celal Erbaş
- Yumurtalık Vocational School, Çukurova University, Adana, Turkey
| | - Mehtap Bayır
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, Erzurum, Turkey
| | - Erdal Özdemir
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, Erzurum, Turkey
| | - Gökhan Arslan
- Faculty of Fisheries, Department of Fisheries and Fish Processing Technology, Atatürk University, Erzurum, Turkey
| | - Abdulkadir Bayır
- Faculty of Fisheries, Department of Aquaculture, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
Li S, Wang Y, Zou C, Zhu Q, Wang Y, Chen H, Yang W, Tu Y, Yan H, Li X, Ge RS. Cypermethrin inhibits Leydig cell development and function in pubertal rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:1160-1172. [PMID: 35102696 DOI: 10.1002/tox.23473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Cypermethrin is a broad-spectrum pyrethroid insecticide that is widely used. It may induce adverse endocrine-disrupting effects on the male reproductive system. Whether cypermethrin can disrupt Leydig cell development and function in the late puberty remains elusive. The objective of this study was to explore the effect of cypermethrin exposure to male rats on the development and function of Leydig cells in late puberty and explore the underlying mechanism. Thirty-six male Sprague-Dawley rats (age of 35 days) were gavaged with cypermethrin (0, 12.5, 25, and 50 mg/kg/day) from postnatal day 35-49. Cypermethrin significantly lowered serum testosterone level while elevating serum luteinizing hormone level at a dose of 50 mg/kg, without altering serum follicle-stimulating hormone level. Cypermethrin markedly decreased CYP11A1-positive Leydig cell number at 50 mg/kg without affecting SOX9-positive Sertoli cell number. It significantly down-regulated the expression of Leydig cell genes, Lhcgr, Star, Cyp11a1, and Cyp17a1 and their proteins, while up-regulating the expression of Sertoli cell genes, Dhh and Amh, and their proteins, at doses of 12.5-50 mg/kg. In addition, cypermethrin significantly increased malondialdehyde level while lowering the expression of Sod1 and Sod2 and their proteins at 50 mg/kg. Cypermethrin markedly induced reactive oxidative species at a concentration of 200 μM and reduced mitochondrial membrane potential at 25 μM and higher concentrations after 24 h of treatment to primary Leydig cells in vitro. In conclusion, cypermethrin inhibits the development and function of Leydig cells in male rats in late puberty.
Collapse
Affiliation(s)
- Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yun Wang
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Cheng Zou
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiqiong Chen
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenjing Yang
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yuhan Tu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Haoni Yan
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Chen X, Gao Y, Wu G, Gu J, Cai Y, Xu J, Cheng H. Molecular cloning, tissue expression, and transcriptional regulation of fabp1 and fabp2 in javelin goby (Synechogobius hasta) in response to starvation stress. Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110484. [PMID: 32745520 DOI: 10.1016/j.cbpb.2020.110484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/15/2023]
Abstract
Fatty acid binding proteins (FABPs) are intracellular lipid chaperones with low molecular weight, which are widely distributed in a variety of tissues, participating in fatty acid transport, cell proliferation, and angiogenesis. In this study, full-length sequences of two fabp genes (fabp1 and fabp2) from javelin goby (Synechogobius hasta) were cloned via RACE PCR, followed by bioinformatic analyses and gene expression evaluation. The fabp1 and fabp2 cDNA sequences were 493 and 626 bp in length, encoding 126 and 132 amino acids, respectively. Phylogenetic analysis revealed that both genes from S. hasta were clustered with those of other fish species in accordance with their known taxonomic relationships. fabp1 and fabp2 mRNA showed distinct expression patterns in different tissues, with fabp1 being most expressed in the liver and fabp2 in the intestine. Furthermore, the expression of fabp1 in the liver was significantly up-regulated during starvation, whereas fabp2 mRNA level in the intestine initially increased and then decreased, indicating that the transcriptional responses of the two genes could be influenced by malnourishment/starvation. Changes in the transcriptional levels of fabp1 and fabp2 also suggested that glycogen was catabolized in the liver of S. hasta at the beginning of starvation prior to lipid depletion, whereas lipids served as fuel reserves in the intestine during short-term starvation. In conclusion, this study provides fundamental insights into the role of Fabps in S. hasta lipid metabolism.
Collapse
Affiliation(s)
- Xiangning Chen
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China.
| | - Yingli Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China
| | - Guanju Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaze Gu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuefeng Cai
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|