1
|
Robinson S, Wegner NC, Sepulveda CA, Franck JPC. Relative sarcolipin (SLN) and sarcoplasmic reticulum Ca 2+ ATPase (SERCA1) transcripts levels in closely related endothermic and ectothermic scombrid fishes: Implications for molecular basis of futile calcium cycle non-shivering thermogenesis (NST). Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111667. [PMID: 38782254 DOI: 10.1016/j.cbpa.2024.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Regional endothermy is the ability of an animal to elevate the temperature of specific regions of the body above that of the surrounding environment and has evolved independently among several fish lineages. Sarcolipin (SLN) is a small transmembrane protein that uncouples the sarcoplasmic reticulum calcium ATPase pump (SERCA1b) resulting in futile Ca2+ cycling and is thought to play a role in non-shivering thermogenesis (NST) in cold-challenged mammals and possibly some fishes. This study investigated the relative expression of sln and serca1 transcripts in three regionally-endothermic fishes (the skipjack, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, both of which elevate the temperatures of their slow-twitch red skeletal muscle (RM) and extraocular muscles (EM), as well as the cranial endothermic swordfish, Xiphias gladius), and closely related ectothermic scombrids (the Eastern Pacific bonito, Sarda chiliensis, and Pacific chub mackerel, Scomber japonicus). Using Reverse Transcription quantitative PCR (RT-qPCR) and species-specific primers, relative sln expression trended higher in both the RM and EM for all four scombrid species compared to white muscle. In addition, relative serca1 expression was found to be higher in RM of skipjack and yellowfin tuna in comparison to white muscle. However, neither sln nor serca1 transcripts were higher in swordfish RM, EM or cranial heater tissue in comparison to white muscle. A key phosphorylation site in sarcolipin, threonine 5, is conserved in the swordfish, but is mutated to alanine or valine in tunas and the endothermic smalleye Pacific opah, Lampris incognitus, which should result in increased uncoupling of the SERCA pump. Our results support the role of potential SLN-NST in endothermic tunas and the lack thereof for swordfish.
Collapse
Affiliation(s)
- Sean Robinson
- Department of Biology, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada. https://twitter.com/swm_robinson
| | - Nicholas C Wegner
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | | | - Jens P C Franck
- Department of Biology, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.
| |
Collapse
|
2
|
Robinson S, Hechter D, Almoumen F, Franck JPC. Sarcolipin (sln) and Sarcoplasmic Reticulum calcium ATPase pump (serca1) expression increase in Japanese medaka (Oryzias latipes) skeletal muscle tissue following cold challenge. Comp Biochem Physiol A Mol Integr Physiol 2024; 287:111534. [PMID: 37844835 DOI: 10.1016/j.cbpa.2023.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Endothermy is the process by which organisms maintain a constant body temperature despite dynamic environmental temperatures. There are two mechanisms organisms use to elevate body temperature: shivering thermogenesis (ST) and non-shivering thermogenesis (NST). Skeletal muscle NST is achieved through a futile Ca2+ cycling of sarcoplasmic reticulum Ca2+ ATPase (Serca1) in the presence of sarcolipin (Sln). Here we subjected Japanese medaka to a cold challenge to examine the expression of sln and serca1 transcripts from slow-twitch red and fast-twitch white muscle as environmental temperature decreased. We show a significant increase in relative sln and serca1 transcript expression in skeletal muscle tissues of cold-challenged Japanese medaka. The elevated transcripts support the role of Sln as a component of NST and support previous literature with the increase in serca1. To date, this is the first cold challenge on an ectothermic fish investigating sln transcripts. The ability of medaka to respond to a cold challenge with an increase in key calcium cycling components, specifically the calcium pump and sarcolipin suggest that teleost fish share a conserved transcriptional program in response to cold stimuli with fish species that possess the requisite anatomical adaptations to conserve metabolic heat.
Collapse
Affiliation(s)
- Sean Robinson
- Department of Biology, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada. https://twitter.com/Swm_RobinsonJens
| | - Drake Hechter
- Department of Food and Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Almoumen
- Department of Biology, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Jens P C Franck
- Department of Biology, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.
| |
Collapse
|
3
|
Pani P, Swalsingh G, Pani S, Senapati U, Sahu B, Pati B, Rout S, Bal NC. Seasonal cold induces divergent structural/biochemical adaptations in different skeletal muscles of Columba livia: evidence for nonshivering thermogenesis in adult birds. Biochem J 2023; 480:1397-1409. [PMID: 37622342 DOI: 10.1042/bcj20230245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Birds are endothermic homeotherms even though they lack the well-studied heat producing brown adipose tissue (BAT), found in several clades of eutherian mammals. Earlier studies in ducklings have demonstrated that skeletal muscle is the primary organ of nonshivering thermogenesis (NST) plausibly via futile calcium (Ca2+)-handling through ryanodine receptor (RyR) and sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). However, recruitment of futile Ca2+-cycling in adult avian skeletal muscle has not been documented. Studies in mammals show remarkable mitochondrial remodeling concurrently with muscle NST during cold. Here, we wanted to define the mitochondrial and biochemical changes in the muscles in free-ranging adult birds and whether different skeletal muscle groups undergo similar seasonal changes. We analyzed four different muscles (pectoralis, biceps, triceps and iliotibialis) from local pigeon (Columba livia) collected during summer and winter seasons in two consecutive years. Remarkable increase in mitochondrial capacity was observed as evidenced from succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activity staining in all the muscles. Interestingly, fibers with low SDH activity exhibited greater cross-sectional area during winter in all muscles except iliotibialis and became peripherally arranged in individual fascicles of pectoralis, which might indicate increased shivering. Furthermore, gene expression analysis showed that SERCA, sarcolipin and RyR are up-regulated to different levels in the muscles analyzed indicating muscle NST via futile Ca2+-cycling is recruited to varying degrees in winter. Moreover, proteins of mitochondrial-SR-tethering and biogenesis also showed differential alterations across the muscles. These data suggest that tropical winter (∼15°C) is sufficient to induce distinct remodeling across muscles in adult bird.
Collapse
Affiliation(s)
- Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | | | - Sunil Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Unmod Senapati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Benudhara Pati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Subhasmita Rout
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
4
|
Grigg G, Nowack J, Bicudo JEPW, Bal NC, Woodward HN, Seymour RS. Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians. Biol Rev Camb Philos Soc 2022; 97:766-801. [PMID: 34894040 PMCID: PMC9300183 DOI: 10.1111/brv.12822] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The whole-body (tachymetabolic) endothermy seen in modern birds and mammals is long held to have evolved independently in each group, a reasonable assumption when it was believed that its earliest appearances in birds and mammals arose many millions of years apart. That assumption is consistent with current acceptance that the non-shivering thermogenesis (NST) component of regulatory body heat originates differently in each group: from skeletal muscle in birds and from brown adipose tissue (BAT) in mammals. However, BAT is absent in monotremes, marsupials, and many eutherians, all whole-body endotherms. Indeed, recent research implies that BAT-driven NST originated more recently and that the biochemical processes driving muscle NST in birds, many modern mammals and the ancestors of both may be similar, deriving from controlled 'slippage' of Ca2+ from the sarcoplasmic reticulum Ca2+ -ATPase (SERCA) in skeletal muscle, similar to a process seen in some fishes. This similarity prompted our realisation that the capacity for whole-body endothermy could even have pre-dated the divergence of Amniota into Synapsida and Sauropsida, leading us to hypothesise the homology of whole-body endothermy in birds and mammals, in contrast to the current assumption of their independent (convergent) evolution. To explore the extent of similarity between muscle NST in mammals and birds we undertook a detailed review of these processes and their control in each group. We found considerable but not complete similarity between them: in extant mammals the 'slippage' is controlled by the protein sarcolipin (SLN), in birds the SLN is slightly different structurally and its role in NST is not yet proved. However, considering the multi-millions of years since the separation of synapsids and diapsids, we consider that the similarity between NST production in birds and mammals is consistent with their whole-body endothermy being homologous. If so, we should expect to find evidence for it much earlier and more widespread among extinct amniotes than is currently recognised. Accordingly, we conducted an extensive survey of the palaeontological literature using established proxies. Fossil bone histology reveals evidence of sustained rapid growth rates indicating tachymetabolism. Large body size and erect stature indicate high systemic arterial blood pressures and four-chambered hearts, characteristic of tachymetabolism. Large nutrient foramina in long bones are indicative of high bone perfusion for rapid somatic growth and for repair of microfractures caused by intense locomotion. Obligate bipedality appeared early and only in whole-body endotherms. Isotopic profiles of fossil material indicate endothermic levels of body temperature. These proxies led us to compelling evidence for the widespread occurrence of whole-body endothermy among numerous extinct synapsids and sauropsids, and very early in each clade's family tree. These results are consistent with and support our hypothesis that tachymetabolic endothermy is plesiomorphic in Amniota. A hypothetical structure for the heart of the earliest endothermic amniotes is proposed. We conclude that there is strong evidence for whole-body endothermy being ancient and widespread among amniotes and that the similarity of biochemical processes driving muscle NST in extant birds and mammals strengthens the case for its plesiomorphy.
Collapse
Affiliation(s)
- Gordon Grigg
- School of Biological SciencesUniversity of QueenslandBrisbaneQLD4072Australia
| | - Julia Nowack
- School of Biological and Environmental SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFU.K.
| | | | | | - Holly N. Woodward
- Oklahoma State University Center for Health SciencesTulsaOK74107U.S.A.
| | - Roger S. Seymour
- School of Biological SciencesUniversity of AdelaideAdelaideSA5005Australia
| |
Collapse
|
5
|
Wang X, Qu M, Liu Y, Schneider RF, Song Y, Chen Z, Zhang H, Zhang Y, Yu H, Zhang S, Li D, Qin G, Ma S, Zhong J, Yin J, Liu S, Fan G, Meyer A, Wang D, Lin Q. Genomic basis of evolutionary adaptation in a warm-blooded fish. Innovation (N Y) 2022; 3:100185. [PMID: 34984407 PMCID: PMC8693259 DOI: 10.1016/j.xinn.2021.100185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Few fishes have evolved elevated body temperatures compared with ambient temperatures, and only in opah (Lampris spp) is the entire body affected. To understand the molecular basis of endothermy, we analyzed the opah genome and identified 23 genes with convergent amino acid substitutions across fish, birds, and mammals, including slc8b1, which encodes the mitochondrial Na+/Ca2+ exchanger and is essential for heart function and metabolic heat production. Among endothermic fishes, 44 convergent genes with suggestive metabolic functions were identified, such as glrx3, encoding a crucial protein for hemoglobin maturation. Numerous genes involved in the production and retention of metabolic heat were also found to be under positive selection. Analyses of opah's unique inner-heat-producing pectoral muscle layer (PMI), an evolutionary key innovation, revealed that many proteins were co-opted from dorsal swimming muscles for thermogenesis and oxidative phosphorylation. Thus, the opah genome provides valuable resources and opportunities to uncover the genetic basis of thermal adaptations in fish.
Collapse
Affiliation(s)
- Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Ralf F Schneider
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
| | - Yue Song
- BGI-Qingdao, Qingdao 266555, China
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.,State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yanhong Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Haiyan Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | - Dongxu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shaobo Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jia Zhong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shuaishuai Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Guangyi Fan
- BGI-Qingdao, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.,University of the Chinese Academy of Sciences, Beijing 100101, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
6
|
Little AG. Thyroid hormone regulation of thermal acclimation in ectotherms: Physiological mechanisms and ecoevolutionary implications. Mol Cell Endocrinol 2021; 530:111285. [PMID: 33891994 DOI: 10.1016/j.mce.2021.111285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/07/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
The pathways that regulate adaptive thermal plasticity in ectothermic vertebrates have received little attention relative to those in birds and mammals. However, there is increasing evidence that thyroid hormone represents a critical regulator of thermal plasticity in both ectothermic and endothermic vertebrates. In this review, I summarize the evidence for thyroid hormone-mediated thermal compensation responses in ectothermic vertebrates, with specific focus on effects on the whole animal, skeletal muscle, and cardiac muscle. Interestingly, these effects can differ wildly between focal tissues and species. I move on to discuss what the role of thyroid hormone in ectotherm thermal plasticity can reveal about stressor interactions and central vs. peripheral levels of thyroid hormone regulation. Lastly, I focus on the conserved nature of thyroid hormone signaling in animal thermal responses, with specific reference to the ectotherm → endotherm spectrum. I use this framework to highlight research avenues that will further resolve the evolutionary trajectory of thyroid hormone actions across animals. I hope to emphasize what thyroid hormone-mediated cold acclimation in a 3 cm fish can contribute to ongoing debates surrounding the impacts of stressor interactions, the potential costs of plasticity, the evolution of endothermy, and the impacts of global change.
Collapse
Affiliation(s)
- A G Little
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
7
|
Li H, Wang C, Li L, Li L. Skeletal muscle non-shivering thermogenesis as an attractive strategy to combat obesity. Life Sci 2021; 269:119024. [PMID: 33450257 DOI: 10.1016/j.lfs.2021.119024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/05/2023]
Abstract
Obesity is a chronic disease derived from disequilibrium between energy intake and energy expenditure and evolving as a challenging epidemiological disease in the 21st century. It is urgently necessary to solve this issue by searching for effective strategies and safe drugs. Skeletal muscle could be a potential therapeutic target for the prevention and treatment of obesity and its associated complications due to non-shivering thermogenesis (NST) function. Skeletal muscle NST is based dominantly on futile sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump cycling that leads to a rise in cytosolic Ca2+, increased adenosine triphosphate (ATP) hydrolysis and heat production. This review will highlight the mechanisms of skeletal muscle NST, including SLN mediated SERCA pump futile cycling, SR-mitochondrial crosstalk and increased mitochondrial biogenesis, and thermogenesis induced by uncoupling proteins 3 (UCP3). We then summarize natural products targeting the pathogenesis of obesity via skeletal muscle NST, offering new insights into pharmacotherapy and potential drug candidates to combat obesity.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Section of Endocrinology, School of Medicine, Yale University, New Haven 06520, USA.
| | - Can Wang
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lingqiao Li
- Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou 317306, PR China
| |
Collapse
|
8
|
Ciezarek A, Gardner L, Savolainen V, Block B. Skeletal muscle and cardiac transcriptomics of a regionally endothermic fish, the Pacific bluefin tuna, Thunnus orientalis. BMC Genomics 2020; 21:642. [PMID: 32942994 PMCID: PMC7499911 DOI: 10.1186/s12864-020-07058-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Abstract
Background The Pacific bluefin tuna (Thunnus orientalis) is a regionally endothermic fish that maintains temperatures in their swimming musculature, eyes, brain and viscera above that of the ambient water. Within their skeletal muscle, a thermal gradient exists, with deep muscles, close to the backbone, operating at elevated temperatures compared to superficial muscles near the skin. Their heart, by contrast, operates at ambient temperature, which in bluefin tunas can range widely. Cardiac function in tunas reduces in cold waters, yet the heart must continue to supply blood for metabolically demanding endothermic tissues. Physiological studies indicate Pacific bluefin tuna have an elevated cardiac capacity and increased cold-tolerance compared to warm-water tuna species, primarily enabled by increased capacity for sarcoplasmic reticulum calcium cycling within the cardiac muscles. Results Here, we compare tissue-specific gene-expression profiles of different cardiac and skeletal muscle tissues in Pacific bluefin tuna. There was little difference in the overall expression of calcium-cycling and cardiac contraction pathways between atrium and ventricle. However, expression of a key sarcoplasmic reticulum calcium-cycling gene, SERCA2b, which plays a key role maintaining intracellular calcium stores, was higher in atrium than ventricle. Expression of genes involved in aerobic metabolism and cardiac contraction were higher in the ventricle than atrium. The two morphologically distinct tissues that derive the ventricle, spongy and compact myocardium, had near-identical levels of gene expression. More genes had higher expression in the cool, superficial muscle than in the warm, deep muscle in both the aerobic red muscle (slow-twitch) and anaerobic white muscle (fast-twitch), suggesting thermal compensation. Conclusions We find evidence of widespread transcriptomic differences between the Pacific tuna ventricle and atrium, with potentially higher rates of calcium cycling in the atrium associated with the higher expression of SERCA2b compared to the ventricle. We find no evidence that genes associated with thermogenesis are upregulated in the deep, warm muscle compared to superficial, cool muscle. Heat generation may be enabled by by the high aerobic capacity of bluefin tuna red muscle.
Collapse
Affiliation(s)
- Adam Ciezarek
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK. .,Earlham Institute, Norwich Research Park, Norwich, UK.
| | - Luke Gardner
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Vincent Savolainen
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - Barbara Block
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
9
|
Legendre LJ, Davesne D. The evolution of mechanisms involved in vertebrate endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190136. [PMID: 31928191 DOI: 10.1098/rstb.2019.0136] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endothermy, i.e. the endogenous production of metabolic heat, has evolved multiple times among vertebrates, and several strategies of heat production have been studied extensively by physiologists over the course of the twentieth century. The independent acquisition of endothermy by mammals and birds has been the subject of many hypotheses regarding their origin and associated evolutionary constraints. Many groups of vertebrates, however, are thought to possess other mechanisms of heat production, and alternative ways to regulate thermogenesis that are not always considered in the palaeontological literature. Here, we perform a review of the mechanisms involved in heat production, with a focus on cellular and molecular mechanisms, in a phylogenetic context encompassing the entire vertebrate diversity. We show that endothermy in mammals and birds is not as well defined as commonly assumed by evolutionary biologists and consists of a vast array of physiological strategies, many of which are currently unknown. We also describe strategies found in other vertebrates, which may not always be considered endothermy, but nonetheless correspond to a process of active thermogenesis. We conclude that endothermy is a highly plastic character in vertebrates and provides a guideline on terminology and occurrences of the different types of heat production in vertebrate evolution. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Lucas J Legendre
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Donald Davesne
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Bal NC, Periasamy M. Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190135. [PMID: 31928193 DOI: 10.1098/rstb.2019.0135] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thermogenesis in endotherms relies on both shivering and non-shivering thermogenesis (NST). The role of brown adipose tissue (BAT) in NST is well recognized, but the role of muscle-based NST has been contested. However, recent studies have provided substantial evidence for the importance of muscle-based NST in mammals. This review focuses primarily on the role of sarcoplasmic reticulum (SR) Ca2+-cycling in muscle NST; specifically, it will discuss recent data showing how uncoupling of sarcoendoplasmic reticulum calcium ATPase (SERCA) (inhibition of Ca2+ transport but not ATP hydrolysis) by sarcolipin (SLN) results in futile SERCA pump activity, increased ATP hydrolysis and heat production contributing to muscle NST. It will also critically examine how activation of muscle NST can be an important factor in regulating metabolic rate and whole-body energy homeostasis. In this regard, SLN has emerged as a powerful signalling molecule to promote mitochondrial biogenesis and oxidative metabolism in muscle. Furthermore, we will discuss the functional interplay between BAT and muscle, especially with respect to how reduced BAT function in mammals could be compensated by muscle-based NST. Based on the existing data, we argue that SLN-mediated thermogenesis is an integral part of muscle NST and that muscle NST potentially contributed to the evolution of endothermy within the vertebrate clade. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Naresh C Bal
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751021, India
| | - Muthu Periasamy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
11
|
Introduction to the XIIIth ICBF conference special issue. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110519. [PMID: 31255804 DOI: 10.1016/j.cbpa.2019.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|