1
|
Edwards T, Bouyoucos IA, Hasler CT, Fry M, Anderson WG. Effect of L-alanine exposure during early life stage on olfactory development, growth and survival in age-0 lake sturgeon Acipenser fulvescens. CONSERVATION PHYSIOLOGY 2024; 12:coae084. [PMID: 39697421 PMCID: PMC11653895 DOI: 10.1093/conphys/coae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Environmental factors play an important role in phenotypic development of fishes, which has implications for hatchery-reared fishes that are released into the wild where natural cues are present. There is interest in examining how early exposure to dietary odourants can affect development of olfaction. The aim of our study was to use behavioural, molecular and electro-physiological techniques to evaluate how introduction of the amino acid L-alanine to the rearing environment might influence the development of olfactory perception of dietary cues, growth and survival in lake sturgeon (Acipenser fulvescens), a species of conservation concern. We hypothesized that exposure to amino acids would influence the onset of feeding during dietary transitions from endogenous to exogenous feeding and predicted that the introduction of L-alanine during early development would promote growth and survival of age-0 lake sturgeon. Additionally, we hypothesized that olfaction in lake sturgeon is a developmentally plastic trait, predicting that the addition of L-alanine prior to exogenous feeding would influence mRNA transcript abundance of genes associated with detection of dietary cues. Our approach was to add L-alanine daily from 17 to 20 days post-fertilization (DPF) before the onset of exogenous feeding. We sampled individuals at 17, 21, 26, 31, 50, 65 and 80 DPF. Additionally, olfactory sensitivity to L-alanine was tested at ~1 year via electro-olfactogram (EOG). We observed no significant differences in mortality or EOG response between L-alanine and control treatments; however, significant differences were observed in morphometrics, behaviour and mRNA transcript abundance of all genes throughout development. Our results indicated the olfactory system exhibited developmental plasticity in response to L-alanine treatment until 50-65 DPF, suggesting that environmental odourants may influence early development of key olfactory processes. Our data could inform practises at conservation hatcheries that are used as part of enhancement programmes for lake sturgeon.
Collapse
Affiliation(s)
- Tyler Edwards
- Department of Biological Sciences, University of Manitoba, 50 Sifton Rd, R3T 2M5 Winnipeg, Manitoba, Canada
| | - Ian A Bouyoucos
- Department of Biological Sciences, University of Manitoba, 50 Sifton Rd, R3T 2M5 Winnipeg, Manitoba, Canada
| | - Caleb T Hasler
- Department of Biology, University of Winnipeg, 515 Portage Ave, R3B 2E9, Winnipeg Manitoba, Canada
| | - Mark Fry
- Department of Biological Sciences, University of Manitoba, 50 Sifton Rd, R3T 2M5 Winnipeg, Manitoba, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Rd, R3T 2M5 Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Wassink L, Huerta B, Larson D, Li W, Scribner K. Hatchery and wild larval lake sturgeon experience effects of captivity on stress reactivity, behavior and predation risk. CONSERVATION PHYSIOLOGY 2022; 10:coac062. [PMID: 36225539 PMCID: PMC9547518 DOI: 10.1093/conphys/coac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/25/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Reintroduction programs are important tools for wildlife conservation. However, captive rearing environments may lead to maladaptive behavior and physiological alterations that reduce survival probability after release. For captive rearing programs that raise individuals captured from the wild during early ontogeny for later release, there is a lack of information about when during ontogeny the detrimental effects of captive rearing may become evident. In this study we compared cortisol levels, predation rates and swimming behavior between hatchery-produced and wild-caught larval lake sturgeon (Acipenser fulvescens), a threatened fish species, at three times over 9 days. Cortisol levels did not indicate that hatchery-produced individuals were more stressed, but cortisol reactivity to an acute stressor disappeared for both hatchery-produced and wild-caught larvae after 9 days in the hatchery. Swimming activity levels decreased over time for hatchery-produced larvae but increased over time for wild-caught larvae, suggesting that behavioral trajectories may be programmed prior to the larval stage. Neither increasing nor decreasing activity levels was advantageous for survival, as predation rates increased over time in captivity for larvae from both treatments. Results suggest that physiological and behavioral phenotypes may not accurately predict survival for individuals released from reintroduction programs and that the captive environment may inhibit transition to the wild even if cortisol levels do not indicate high stress. Findings emphasize that even a short amount of time in captivity during early ontogeny can affect phenotypes of individuals captured from wild populations, which may impact the success of reintroduction programs.
Collapse
Affiliation(s)
- Lydia Wassink
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing MI 48824, USA
| | - Belinda Huerta
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing MI 48824, USA
| | - Doug Larson
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing MI 48824, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing MI 48824, USA
| | - Kim Scribner
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing MI 48824, USA
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing MI 48824, USA
| |
Collapse
|
3
|
Yoon GR, Laluk A, Bouyoucos IA, Anderson WG. Effects of Dietary Shifts on Ontogenetic Development of Metabolic Rates in Age 0 Lake Sturgeon ( Acipenser fulvescens). Physiol Biochem Zool 2022; 95:135-151. [PMID: 34990335 DOI: 10.1086/718211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn many fish species, ontogenetic dietary shifts cause changes in both quantitative and qualitative intake of energy, and these transitions can act as significant bottlenecks in survival within a given year class. In the present study, we estimated routine metabolic rate (RMR) and forced maximum metabolic rate (FMR) in age 0 lake sturgeon (Acipenser fulvescens) on a weekly basis from 6 to 76 days posthatch (dph) within the same cohort of fish. We were particularly interested in the period of dietary transition from yolk to exogenous feeding between 6 and 17 dph and as the fish transitioned from an artemia-based diet to a predominantly bloodworm diet between 49 and 67 dph. Measurement of growth rate and energy density throughout indicated that there was a brief period of growth arrest during the transition from artemia to bloodworm. The highest mass-specific RMR (mg O2 kg-1 h-1) recorded throughout the first 76 d of development occurred during the yolk sac phase and during transition from artemia to bloodworm. Similarly, diet transition from artemia to bloodworm-when growth arrest was observed-increased scaled RMR (i.e., mg O2 kg-0.89 h-1), and it did not significantly differ from scaled FMR. Log-log relationships between non-mass-specific RMR or FMR (i.e., mg O2 h-1) and body mass significantly changed as the growing fish adapted to the nutritional differences of their primary diet. We demonstrate that dietary change during early ontogeny has consequences for growth that may reflect altered metabolic performance. Results have implications for understanding cohort and population dynamics during early life and effective management for conservation fish hatcheries.
Collapse
|
4
|
Bugg WS, Yoon GR, Brandt C, Earhart ML, Anderson WG, Jeffries KM. The effects of population and thermal acclimation on the growth, condition and cold responsive mRNA expression of age-0 lake sturgeon (Acipenser fulvescens). JOURNAL OF FISH BIOLOGY 2021; 99:1912-1927. [PMID: 34476812 DOI: 10.1111/jfb.14897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
In Manitoba, Canada, wild lake sturgeon (Acipenser fulvescens) populations exist along a latitudinal gradient and are reared in hatcheries to bolster threatened populations. We reared two populations of lake sturgeon, one from each of the northern and southern ends of Manitoba and examined the effects of typical hatchery temperatures (16°C) as well as 60-day acclimation to elevated rearing temperatures (20°C) on mortality, growth and condition throughout early development. Additionally, we examined the cold shock response, which may be induced during stocking, through the hepatic mRNA expression of genes involved in the response to cold stress and homeoviscous adaptation (HSP70, HSP90a, HSP90b, CIRP and SCD). Sturgeon were sampled after 1 day and 1 week following stocking into temperatures of 8, 6 and 4°C in a controlled laboratory environment. The southern population showed lower condition and higher mortality during early life than the northern population while increased rearing temperature impacted the growth and condition of developing northern sturgeon. During the cold shock, HSP70 and HSP90a mRNA expression increased in all sturgeon treatments as stocking temperature decreased, with higher expression observed in the southern population. Expression of HSP90b, CIRP and SCD increased as stocking temperature decreased in northern sturgeon with early acclimation to 20°C. Correlation analyses indicated the strongest molecular relationships were in the expression of HSP90b, CIRP and SCD, across all treatments, with a correlation between HSP90b and body condition in northern sturgeon with early acclimation to 20°C. Together, these observations highlight the importance of population and rearing environment throughout early development and on later cellular responses induced by cold stocking temperatures.
Collapse
Affiliation(s)
- William S Bugg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Catherine Brandt
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- North/South Consultants Inc., Winnipeg, Manitoba, Canada
| | - Madison L Earhart
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Schoen AN, Bouyoucos IA, Anderson WG, Wheaton CJ, Planes S, Mylniczenko ND, Rummer JL. Simulated heatwave and fishing stressors alter corticosteroid and energy balance in neonate blacktip reef sharks, Carcharhinus melanopterus. CONSERVATION PHYSIOLOGY 2021; 9:coab067. [PMID: 34457309 PMCID: PMC8395585 DOI: 10.1093/conphys/coab067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The increasing frequency and duration of marine heatwaves attributed to climate change threatens coastal elasmobranchs and may exacerbate existing anthropogenic stressors. While the elasmobranch stress response has been well studied, the role of the unique corticosteroid-1α-hydroxycorticosterone (1α-OHB)-in energy balance is not understood. Therefore, 1α-OHB's utility as a stress biomarker in elasmobranch conservation physiology is equivocal. Here, we analyse the roles of corticosteroids, 1α-OHB and corticosterone, and metabolites, glucose and 3-hydroxybutyrate (3-HB), in response to stress in a protected tropical shark species, the blacktip reef shark (Carcharhinus melanopterus). Wild-caught neonates were exposed to ambient (27°C) or heatwave conditions (29°C) and subsequently a simulated fishing stressor (1 min air exposure). Blood samples were taken prior to temperature exposure, prior to air exposure, and 30 min, 1 h, 24 h, and 48 h post-air exposure at treatment temperatures. Plasma 1α-OHB was elevated for 48 h in 27°C-exposed sharks but declined over time in 29°C-exposed sharks. Plasma 1α-OHB was not correlated with either metabolite. Plasma glucose was higher and plasma 3-HB was lower in 29°C-exposed sharks. In a separate experiment, blood samples were collected from both neonate and adult sharks immediately following capture and again 5 min later, and analysed for corticosteroids and metabolites. Plasma 1α-OHB increased in neonates within 5 min, but neonates displayed lower plasma 1α-OHB and higher glucose concentrations than adults. We conclude that 1α-OHB does not serve as a classic glucocorticoid role in C. melanopterus under these stressors. Furthermore, we show for the first time, ontogenetic differences in plasma 1α-OHB. Ultimately, our findings provide insights into hormonal control of energy mobilization during stress in C. melanopterus, particularly during simulated heatwave conditions, which seem to alter both endocrine and energy mobilization. Further work is needed to determine the utility of 1α-OHB as a biomarker for the mobilization of energy during a stress event in elasmobranchs.
Collapse
Affiliation(s)
- Alexandra N Schoen
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Catharine J Wheaton
- Disney Animals, Science and Environment, Disney’s Animal Kingdom® and the Seas with Nemo and Friends®, Lake Buena Vista, FL 32830, USA
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- Laboratoire d’Excellence ‘CORAIL’, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Natalie D Mylniczenko
- Disney Animals, Science and Environment, Disney’s Animal Kingdom® and the Seas with Nemo and Friends®, Lake Buena Vista, FL 32830, USA
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
6
|
Yoon GR, Earhart M, Wang Y, Suh M, Anderson WG. Effects of temperature and food availability on liver fatty acid composition and plasma cortisol concentration in age-0 lake sturgeon: Support for homeoviscous adaptation. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111056. [PMID: 34418543 DOI: 10.1016/j.cbpa.2021.111056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Overwintering survival in north temperate fishes involves a series of adaptive responses to multiple environmental stressors. Homeoviscous adaptation includes changes in membrane lipid composition in response to reduced environmental temperature, which may be driven by changes in hormones involved in the endocrine stress response. We examined how reduced temperature and food availability may act in concert to influence hepatic fatty acid composition of phospholipids and triglycerides, in addition to plasma concentration of cortisol in age-0 lake sturgeon (A. fulvescens). At 153 days post hatch (dph), temperature was decreased from 16 °C to 1 °C at a rate of 0.5 °C per day, and at 200 dph, fish were either fed every other day or deprived of food for 45 days to simulate an overwintering event. Liver fatty acid composition of phospholipids and triglycerides were assessed before temperature manipulation (16 °C; 153 dph), when fish had been at 1 °C for 16 days (199 dph), 25 days of overwintering (225 dph) and 45 days of overwintering (245 dph). Plasma cortisol concentration was assessed at 153, 225 and 245 dph. When temperature was decreased, both mono- and polyunsaturated fatty acids significantly increased in phospholipids and triglycerides. Total omega-6 fatty acids significantly increased in phospholipids while total omega-3 fatty acids did not. During the simulated overwintering, there was no obvious difference in fatty acids of phospholipids and triglycerides between diet treatments and no difference in circulating cortisol concentration between baseline and post-stressed fish in the fasted group. Our results provide support for homeoviscous adaptation to cold temperatures in lake sturgeon.
Collapse
Affiliation(s)
- Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada.
| | - Madison Earhart
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yidi Wang
- Department of Food and Human Nutrition Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Miyoung Suh
- Department of Food and Human Nutrition Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| |
Collapse
|
7
|
Bugg WS, Jeffries KM, Gary Anderson W. Survival and gene expression responses in immune challenged larval lake sturgeon. FISH & SHELLFISH IMMUNOLOGY 2021; 112:1-7. [PMID: 33588083 DOI: 10.1016/j.fsi.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Larval lake sturgeon, Acipenser fulvescens, reared in hatcheries for stock enhancement of wild populations may be susceptible to early opportunistic bacterial infection. Thus, we examined survival and whole-body mRNA expression of both stress- and immune-related genes (MyD88, IL-1β, StAR, GR1, and HSP70) in 30 days post fertilization larval lake sturgeon following immune challenge with lipopolysaccharides (LPS). Larval sturgeon were exposed to 0, 25, 50, 100, 150, and 200 μg ml-1 LPS and sampled after 30 min, 4 h, and 48 h. Mortality was zero in 0 and 25 μg ml-1 LPS; 37.5% in 50 μg ml-1 LPS and 100% in the higher concentrations. Expression of MyD88 and StAR mRNA were positively correlated and increased with time in the 50 μg ml-1 LPS treatment. There was an influence of both treatment and time on IL-1β mRNA, with expression 10-fold higher than controls after 4 h. Expression of HSP70 mRNA was suppressed within 30 min of 50 μg ml-1 LPS exposure and remained so throughout the time course. Correlated mRNA expression of GR1 with MyD88, StAR and IL-1β suggests a potential relationship between the innate immune and glucocorticoid responses of larval lake sturgeon during this early developmental stage. Data presented suggest that larval lake sturgeon largely responded with predicted changes in gene expression of immune related and stress response genes following LPS challenge. This study provides a foundation for future research examining the effects of hatchery and naturally occurring stressors on the immune responses of larval lake sturgeon.
Collapse
Affiliation(s)
- William S Bugg
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|