1
|
Chua FZ, Lin LY, Tseng YC, Chou MY. Sexual dimorphism in zebrafish aggression and metabolism under acute ammonia stress. Comp Biochem Physiol C Toxicol Pharmacol 2025; 290:110131. [PMID: 39855439 DOI: 10.1016/j.cbpc.2025.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Animals must adapt their behaviors in response to environmental stressors to enhance survival prospects. Aquatic organisms, particularly teleost fish, face unique environmental challenges, making them ideal models for studying environmental stress adaptation. While previous research on acute environmental stress acclimation provided valuable insights, it often overlooked potential sex-specific responses. Growing evidence suggests significant sexual dimorphism in physiological and behavioral responses to various environmental stressors. This emerging paradigm reveals a critical knowledge gap in our understanding of sex-specific stress acclimation strategies and their underlying mechanisms in teleost fish. To address this gap, we investigated the effects of acute ammonia exposure, a common aquatic stressor, on male and female zebrafish. We examined differential behaviors and metabolic rates between the sexes under ammonia stress and found sex-specific responses: males tended to recover aggression and reduced fighting latency without affecting outcomes, whereas females exhibited lowered oxygen consumption and reduced aggression. These findings highlight differences in acute stress adaptation strategies between males and females, contributing to a more-comprehensive understanding of sex-specific stress adaptation in aquatic environments and underscoring the importance of considering sexual dimorphism in environmental stress studies.
Collapse
Affiliation(s)
- Fang Zhi Chua
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yung-Che Tseng
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, Yilan County 26242, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
2
|
Liu J, Zhang C, Yu H, Fu Z, Xie H, Wang Y, Zhao B, Li Q, Kuang K, Lin H. Metabolic Activity of Invasive Apple Snails Negatively Affects the Survival of Native Benthic Snail in Mangrove. BIOLOGY 2025; 14:141. [PMID: 40001909 PMCID: PMC11851716 DOI: 10.3390/biology14020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025]
Abstract
The golden apple snail (GAS, Pomacea canaliculata) has invaded mangrove forests. The effect of water contaminated by metabolic activity of GAS feeding on Acanthus ilicifolius (T1), Sonneratia apetala (T2), and without food (CK) on the native mangrove black helmet snail (BHS, Neritina pulligera) was investigated under salinity conditions. The GAS deteriorated saline water quality (2.5‱). DO contents in T1 and T2 approached zero at 9 d. Compared to CK, the contents of COD, total N, NH4+, NO3-, and total P of the contaminated water in T1 increased by 297%, 205%, 262%, 210%, and 518% after 9 d, while these indicators in T2 increased by 74%, 31%, 57%, 326%, and 154%, respectively. The LC50 of the contaminated water in T1 against the BHS reached 22.72%. The weight of the BHS exposed to the 100% contaminated water in T1 and T2 significantly decreased after exposure. The content of GPT of the BHS exposed to the 100%-contaminated water in T1 and T2 increased by 55% and 26%, while the MDA content increased by 38% and 34%. The 100%-contaminated water in T1 led to cell degeneration and incomplete structure in the hepatopancreas tissue of the BHS. The GAS feeding on holly mangroves can compete against native mangrove snails through water deterioration.
Collapse
Affiliation(s)
- Jinling Liu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China; (J.L.)
| | - Caiying Zhang
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China; (J.L.)
| | - Huixiu Yu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China; (J.L.)
| | - Zixin Fu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huizhen Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yiming Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Benliang Zhao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qing Li
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China; (J.L.)
| | - Kailin Kuang
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China; (J.L.)
| | - Huanting Lin
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China; (J.L.)
| |
Collapse
|
3
|
Leonard EM, Porteus CS, Brink D, Milsom WK. Fish gill chemosensing: knowledge gaps and inconsistencies. J Comp Physiol B 2024; 194:1-33. [PMID: 38758303 DOI: 10.1007/s00360-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Deidre Brink
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Pan YK. Structure and function of the larval teleost fish gill. J Comp Physiol B 2024; 194:569-581. [PMID: 38584182 DOI: 10.1007/s00360-024-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The fish gill is a multifunctional organ that is important in multiple physiological processes such as gas transfer, ionoregulation, and chemoreception. This characteristic organ of fishes has received much attention, yet an often-overlooked point is that larval fishes in most cases do not have a fully developed gill, and thus larval gills do not function identically as adult gills. In addition, large changes associated with gas exchange and ionoregulation happen in gills during the larval phase, leading to the oxygen and ionoregulatory hypotheses examining the environmental constraint that resulted in the evolution of gills. This review thus focuses exclusively on the larval fish gill of teleosts, summarizing the development of teleost larval fish gills and its function in gas transfer, ionoregulation, and chemoreception, and comparing and contrasting it to adult gills where applicable, while providing some insight into the oxygen vs ionoregulatory hypotheses debate.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Tang R, Chen Y, Yan F, Chen KM. Phase Retrieval-Based Phase-Contrast Imaging and CT of Living Zebrafish. Zebrafish 2023. [PMID: 37023400 DOI: 10.1089/zeb.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Zebrafish are widely used as experimental animal models. They are small and move fast in the water. Real-time imaging of fast-moving zebrafish is a challenge, and it requires that the imaging technique has higher spatiotemporal resolution and penetration ability. The purpose of this study was to evaluate the feasibility of dynamic phase retrieval (PR)-based phase-contrast imaging (PCI) for real-time displaying of the breathing and swimming process in unanesthetized free-moving zebrafish, and to evaluate the feasibility of PR-based phase-contrast CT (PCCT) for visualizing the soft tissues in anesthetized living zebrafish. PR was performed using the phase-attenuation duality (PAD) method with the δ/β values (PAD property) of 100 and 1000 for dynamic PR-based PCI and PR-based PCCT, respectively. The contrast-to-noise ratio (CNR) was used for quantitatively assessing the visibility of the adipose tissue and muscle tissue. The skeleton and swim bladder chambers in fast-moving zebrafish were clearly shown. The dynamic processes of breathing and swimming were visibly recorded. The respiratory intensity and frequency and the movement flexibility of the zebrafish could be dynamically evaluated. By producing more obvious image contrast, PR-based PCCT clearly showed the adipose tissue and muscle tissue. The CNRs from PR-based PCCT were significantly higher than those from PR-free PCCT for both adipose tissue (9.256 ± 2.037 vs. 0.429 ± 0.426, p < 0.0001) and muscle tissue (7.095 ± 1.443 vs. 0.324 ± 0.267, p < 0.0001). Dynamic PR-based PCI holds the potential for investigating both morphological abnormalities and motor disorders. PR-based PCCT offers clear visualization and the potential for quantification of soft tissues in living zebrafish.
Collapse
Affiliation(s)
- Rongbiao Tang
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Yi Chen
- Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Ke-Min Chen
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Perry SF, Pan YK, Gilmour KM. Insights into the control and consequences of breathing adjustments in fishes-from larvae to adults. Front Physiol 2023; 14:1065573. [PMID: 36793421 PMCID: PMC9923008 DOI: 10.3389/fphys.2023.1065573] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Adjustments of ventilation in fishes to regulate the volume of water flowing over the gills are critically important responses to match branchial gas transfer with metabolic needs and to defend homeostasis during environmental fluctuations in O2 and/or CO2 levels. In this focused review, we discuss the control and consequences of ventilatory adjustments in fish, briefly summarizing ventilatory responses to hypoxia and hypercapnia before describing the current state of knowledge of the chemoreceptor cells and molecular mechanisms involved in sensing O2 and CO2. We emphasize, where possible, insights gained from studies on early developmental stages. In particular, zebrafish (Danio rerio) larvae have emerged as an important model for investigating the molecular mechanisms of O2 and CO2 chemosensing as well as the central integration of chemosensory information. Their value stems, in part, from their amenability to genetic manipulation, which enables the creation of loss-of-function mutants, optogenetic manipulation, and the production of transgenic fish with specific genes linked to fluorescent reporters or biosensors.
Collapse
|
7
|
Leonard EM, Weaver FE, Nurse CA. Lactate sensing by neuroepithelial cells isolated from the gills of killifish (Fundulus heteroclitus). J Exp Biol 2022; 225:285898. [PMID: 36420741 DOI: 10.1242/jeb.245088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Lactate is produced in most vertebrate cells as a by-product of anaerobic metabolism. In addition to its role as a fuel for many tissues, circulating lactate can act as a signalling molecule and stimulates ventilation in air- and water-breathing vertebrates. Recent evidence suggests lactate acts on O2- and CO2/H+-sensitive chemoreceptors located in the mammalian carotid body. While analogous receptors (neuroepithelial cells or NECs) in fish gills are presumed to also function as lactate sensors, direct evidence is lacking. Here, using ratiometric Fura-2 Ca2+ imaging, we show that chemosensitive NECs isolated from killifish gills respond to lactate (5-10 mmol l-1; pHe ∼7.8) with intracellular Ca2+ elevations. These responses were inhibited by an L-type Ca2+ channel blocker (nifedipine; 0.5 µmol l-1), a monocarboxylic acid transporter (MCT) blocker (α-cyano-4-hydroxycinnamate; 300 µmol l-1) or a competitive MCT substrate (pyruvate; 5 mmol l-1). These data provide the first direct evidence that gill NECs act as lactate sensors.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfred Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Fiona E Weaver
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
8
|
Perry SF, Gilmour KM, Duarte RM, Wood CM, Almeida-Val VMF, Val AL. The effects of dissolved organic carbon on the reflex ventilatory responses of the neotropical teleost (Colossoma macropomum) to hypoxia or hypercapnia. CHEMOSPHERE 2021; 277:130314. [PMID: 34384180 DOI: 10.1016/j.chemosphere.2021.130314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/13/2023]
Abstract
The tambaqui (Colossoma macropomum), migrates annually between whitewater and blackwater rivers of the Amazon. Unlike the whitewater, blackwater is characterized by higher levels of dissolved organic carbon (DOC), including humic acids (HA). Because humic substances impair sensory processes, the current study tested the hypothesis that O2 and/or CO2 chemoreception is impeded in blackwater owing to the presence of HA. Thus, the ventilatory responses of tambaqui to hypoxia or hypercapnia were assessed in well water transported from Manaus, local blackwater, and in well water containing HA either extracted from Rio Negro water or obtained commercially (Sigma Aldrich; SA). In well water, tambaqui exhibited typical hyperventilatory responses to hypoxia or hypercapnia. These responses were prevented by simultaneously exposing fish to SA HA (20 mg l-1). The negative effects of SA HA on ventilation were prevented when natural DOC (30 mg l-1; extracted from Rio Negro water after first removing the endogenous HA fraction) was added concurrently, indicating a protective effect of this non-humic acid DOC fraction. The hyperventilatory responses were unaffected during acute exposure or after acclimation of fish to Rio Negro water. HA extracted from Rio Negro water did not impair the hyperventilatory responses to hypoxia or hypercapnia. This study, while demonstrating a negative effect of SA HA derived from peat (coal) on the control of breathing in tambaqui, failed to reveal any detrimental consequences of HA (derived from the decomposition of a variety of lignin-rich plants) naturally occurring in the blackwaters of the Rio Negro.
Collapse
Affiliation(s)
- Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie Drive, Ottawa, ON, K1N 6N5, Canada.
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie Drive, Ottawa, ON, K1N 6N5, Canada
| | - Rafael M Duarte
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil; Biosciences Institute, São Paulo State University - UNESP, Coastal Campus, São Vicente, SP, Brazil
| | - Chris M Wood
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil; Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Vera M F Almeida-Val
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| |
Collapse
|