1
|
Riedelbauch S, Masser S, Fasching S, Lin SY, Salgania HK, Aarup M, Ebert A, Jeske M, Levine MT, Stelzl U, Andersen P. Recurrent innovation of protein-protein interactions in the Drosophila piRNA pathway. EMBO J 2025:10.1038/s44318-025-00439-8. [PMID: 40275032 DOI: 10.1038/s44318-025-00439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Despite being essential for fertility, genome-defense-pathway genes often evolve rapidly. However, little is known about the molecular basis of this adaptation. Here, we characterized the evolution of a protein interaction network within the PIWI-interacting small RNA (piRNA) genome-defense pathway in Drosophila at unprecedented scale and evolutionary resolution. We uncovered the pervasive rapid evolution of a protein interaction network anchored at the heterochromatin protein 1 (HP1) paralog Rhino. Through cross-species high-throughput yeast-two-hybrid screening, we identified three distinct evolutionary protein interaction trajectories across ~40 million years of Drosophila evolution. While several protein interactions are fully conserved, indicating functional conservation despite rapid amino acid-sequence change, other interactions are preserved through coevolution and were detected only between proteins within or from closely related species. We also identified species-restricted protein interactions, revealing insight into the mechanistic diversity and ongoing molecular innovation in Drosophila piRNA production. In sum, our analyses reveal principles of interaction evolution in an adaptively evolving protein-protein interaction network, and support intermolecular interaction innovation as a central molecular mechanism of evolutionary adaptation in protein-coding genes.
Collapse
Affiliation(s)
- Sebastian Riedelbauch
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Sarah Masser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sandra Fasching
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Sung-Ya Lin
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mie Aarup
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Anja Ebert
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), 69120, Heidelberg, Germany
| | - Mia T Levine
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
| | - Peter Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
2
|
Kohlmayr JM, Grabner GF, Nusser A, Höll A, Manojlović V, Halwachs B, Masser S, Jany-Luig E, Engelke H, Zimmermann R, Stelzl U. Mutational scanning pinpoints distinct binding sites of key ATGL regulators in lipolysis. Nat Commun 2024; 15:2516. [PMID: 38514628 PMCID: PMC10958042 DOI: 10.1038/s41467-024-46937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
ATGL is a key enzyme in intracellular lipolysis and plays an important role in metabolic and cardiovascular diseases. ATGL is tightly regulated by a known set of protein-protein interaction partners with activating or inhibiting functions in the control of lipolysis. Here, we use deep mutational protein interaction perturbation scanning and generate comprehensive profiles of single amino acid variants that affect the interactions of ATGL with its regulatory partners: CGI-58, G0S2, PLIN1, PLIN5 and CIDEC. Twenty-three ATGL amino acid variants yield a specific interaction perturbation pattern when validated in co-immunoprecipitation experiments in mammalian cells. We identify and characterize eleven highly selective ATGL switch mutations which affect the interaction of one of the five partners without affecting the others. Switch mutations thus provide distinct interaction determinants for ATGL's key regulatory proteins at an amino acid resolution. When we test triglyceride hydrolase activity in vitro and lipolysis in cells, the activity patterns of the ATGL switch variants trace to their protein interaction profile. In the context of structural data, the integration of variant binding and activity profiles provides insights into the regulation of lipolysis and the impact of mutations in human disease.
Collapse
Affiliation(s)
- Johanna M Kohlmayr
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Gernot F Grabner
- Institute of Molecular Biosciences, Biochemistry, University of Graz, Graz, Austria
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Anna Nusser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Anna Höll
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Verina Manojlović
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Bettina Halwachs
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Sarah Masser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Evelyne Jany-Luig
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Hanna Engelke
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, Biochemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria.
- Field of Excellence BioHealth - University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
3
|
Moesslacher CS, Auernig E, Woodsmith J, Feichtner A, Jany-Luig E, Jehle S, Worseck JM, Heine CL, Stefan E, Stelzl U. Missense variant interaction scanning reveals a critical role of the FERM domain for tumor suppressor protein NF2 conformation and function. Life Sci Alliance 2023; 6:e202302043. [PMID: 37280085 PMCID: PMC10244618 DOI: 10.26508/lsa.202302043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
NF2 (moesin-ezrin-radixin-like [MERLIN] tumor suppressor) is frequently inactivated in cancer, where its NF2 tumor suppressor functionality is tightly coupled to protein conformation. How NF2 conformation is regulated and how NF2 conformation influences tumor suppressor activity is a largely open question. Here, we systematically characterized three NF2 conformation-dependent protein interactions utilizing deep mutational scanning interaction perturbation analyses. We identified two regions in NF2 with clustered mutations which affected conformation-dependent protein interactions. NF2 variants in the F2-F3 subdomain and the α3H helix region substantially modulated NF2 conformation and homomerization. Mutations in the F2-F3 subdomain altered proliferation in three cell lines and matched patterns of disease mutations in NF2 related-schwannomatosis. This study highlights the power of systematic mutational interaction perturbation analysis to identify missense variants impacting NF2 conformation and provides insight into NF2 tumor suppressor function.
Collapse
Affiliation(s)
- Christina S Moesslacher
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Elisabeth Auernig
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Jonathan Woodsmith
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Evelyne Jany-Luig
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Stefanie Jehle
- Max-Planck Institute for Molecular Genetics (MPIMG), Otto-Warburg-Laboratory, Berlin, Germany
| | - Josephine M Worseck
- Max-Planck Institute for Molecular Genetics (MPIMG), Otto-Warburg-Laboratory, Berlin, Germany
| | - Christian L Heine
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
- Institute of Molecular Biology, Innsbruck, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Max-Planck Institute for Molecular Genetics (MPIMG), Otto-Warburg-Laboratory, Berlin, Germany
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| |
Collapse
|
4
|
Kondratyeva L, Alekseenko I, Chernov I, Sverdlov E. Data Incompleteness May form a Hard-to-Overcome Barrier to Decoding Life's Mechanism. BIOLOGY 2022; 11:1208. [PMID: 36009835 PMCID: PMC9404739 DOI: 10.3390/biology11081208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
In this brief review, we attempt to demonstrate that the incompleteness of data, as well as the intrinsic heterogeneity of biological systems, may form very strong and possibly insurmountable barriers for researchers trying to decipher the mechanisms of the functioning of live systems. We illustrate this challenge using the two most studied organisms: E. coli, with 34.6% genes lacking experimental evidence of function, and C. elegans, with identified proteins for approximately 50% of its genes. Another striking example is an artificial unicellular entity named JCVI-syn3.0, with a minimal set of genes. A total of 31.5% of the genes of JCVI-syn3.0 cannot be ascribed a specific biological function. The human interactome mapping project identified only 5-10% of all protein interactions in humans. In addition, most of the available data are static snapshots, and it is barely possible to generate realistic models of the dynamic processes within cells. Moreover, the existing interactomes reflect the de facto interaction but not its functional result, which is an unpredictable emerging property. Perhaps the completeness of molecular data on any living organism is beyond our reach and represents an unsolvable problem in biology.
Collapse
Affiliation(s)
- Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Eugene Sverdlov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| |
Collapse
|