1
|
Hibshman JD, Clark-Hachtel CM, Bloom KS, Goldstein B. A bacterial expression cloning screen reveals single-stranded DNA-binding proteins as potent desicco-protectants. Cell Rep 2024; 43:114956. [PMID: 39531375 PMCID: PMC11654893 DOI: 10.1016/j.celrep.2024.114956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Desiccation kills most cells. Some proteins have been identified to help certain cells survive desiccation, but many protein protectants are likely to be unknown. Moreover, the mechanisms ensuring protection of key cellular components are incompletely understood. We devised an expression-cloning approach to discover further protectants. We expressed cDNA libraries from two species of tardigrades in E. coli, and we subjected the bacteria to desiccation to select for survivors. Sequencing the populations of surviving bacteria revealed enrichment of mitochondrial single-stranded DNA-binding proteins (mtSSBs) from both tardigrade species. Expression of mtSSBs in bacteria improved desiccation survival as strongly as the best tardigrade protectants known to date. We found that DNA-binding activity of mtSSBs was necessary and sufficient to improve the desiccation tolerance of bacteria. Although tardigrade mtSSBs were among the strongest protectants we found, single-stranded DNA binding proteins in general offered some protection. These results identify single-stranded DNA-binding proteins as potent desicco-protectants.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | - Kerry S Bloom
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Kirk MJ, Xu C, Paules J, Rothman JH. Single-animal, single-tube RNA extraction for comparison of relative transcript levels via qRT-PCR in the tardigrade Hypsibius exemplaris.. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585302. [PMID: 38559134 PMCID: PMC10979942 DOI: 10.1101/2024.03.15.585302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The tardigrade Hypsibius exemplaris is an emerging model organism renowned for its ability to survive environmental extremes. To explore the molecular mechanisms and genetic basis of such extremotolerance, many studies rely on RNA-sequencing (RNA-seq), which can be performed on populations ranging from large cohorts to individual animals. Reverse Transcription Polymerase Chain Reaction (RT-PCR) and RNA interference (RNAi) are subsequently used to confirm RNA-seq findings and assess the genetic requirements for candidate genes, respectively. Such studies require an efficient, accurate, and affordable method for RNA extraction and measurement of relative transcript levels by quantitative RT-PCR (qRT-PCR). This work presents an efficient single-tardigrade, single-tube RNA extraction method (STST) that not only reliably isolates RNA from individual tardigrades but also reduces the required time and cost for each extraction. This RNA extraction method yields quantities of cDNA that can be used to amplify and detect multiple transcripts by quantitative PCR (qRT-PCR). The method is validated by analyzing dynamic changes in the expression of genes encoding two heat-shock-regulated proteins, Heat-Shock Protein 70 β2 (HSP70 β2) and Heat-Shock Protein 90α (HSP90α), making it possible to assess their relative expression levels in heat-exposed individuals using qRT-PCR. STST effectively complements existing bulk and single tardigrade RNA extraction methods, permitting rapid and affordable examination of individual tardigrade transcriptional levels by qRT-PCR.
Collapse
Affiliation(s)
- Molly J Kirk
- Department of Molecular Cellular and Developmental Biology University of California, Santa Barbara, Santa Barbara, CA
| | - Chaoming Xu
- Department of Molecular Cellular and Developmental Biology University of California, Santa Barbara, Santa Barbara, CA
| | - Jonathan Paules
- Department of Molecular Cellular and Developmental Biology University of California, Santa Barbara, Santa Barbara, CA
| | - Joel H Rothman
- Department of Molecular Cellular and Developmental Biology University of California, Santa Barbara, Santa Barbara, CA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA
| |
Collapse
|
3
|
Li L, Ge Z, Liu S, Zheng K, Li Y, Chen K, Fu Y, Lei X, Cui Z, Wang Y, Huang J, Liu Y, Duan M, Sun Z, Chen J, Li L, Shen P, Wang G, Chen J, Li R, Li C, Yang Z, Ning Y, Luo A, Chen B, Seim I, Liu X, Wang F, Yao Y, Guo F, Yang M, Liu CH, Fan G, Wang L, Yang D, Zhang L. Multi-omics landscape and molecular basis of radiation tolerance in a tardigrade. Science 2024; 386:eadl0799. [PMID: 39446960 DOI: 10.1126/science.adl0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Tardigrades are captivating organisms known for their resilience in extreme environments, including ultra-high-dose radiation, but the underlying mechanisms of this resilience remain largely unknown. Using genome, transcriptome, and proteome analysis of Hypsibius henanensis sp. nov., we explored the molecular basis contributing to radiotolerance in this organism. A putatively horizontally transferred gene, DOPA dioxygenase 1 (DODA1), responds to radiation and confers radiotolerance by synthesizing betalains-a type of plant pigment with free radical-scavenging properties. A tardigrade-specific radiation-induced disordered protein, TRID1, facilitates DNA damage repair through a mechanism involving phase separation. Two mitochondrial respiratory chain complex assembly proteins, BCS1 and NDUFB8, accumulate to accelerate nicotinamide adenine dinucleotide (NAD+) regeneration for poly(adenosine diphosphate-ribosyl)ation (PARylation) and subsequent poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)-mediated DNA damage repair. These three observations expand our understanding of mechanisms of tardigrade radiotolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572006, China
| | | | | | | | | | | | | | | | | | | | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
4
|
Al-Ansari M, Fitzsimons T, Wei W, Goldberg MW, Kunieda T, Quinlan RA. The major inducible small heat shock protein HSP20-3 in the tardigrade Ramazzottius varieornatus forms filament-like structures and is an active chaperone. Cell Stress Chaperones 2024; 29:51-65. [PMID: 38330543 PMCID: PMC10939073 DOI: 10.1016/j.cstres.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 02/10/2024] Open
Abstract
The tardigrade Ramazzottius varieornatus has remarkable resilience to a range of environmental stresses. In this study, we have characterised two members of the small heat shock protein (sHSP) family in R. varieornatus, HSP20-3 and HSP20-6. These are the most highly upregulated sHSPs in response to a 24 h heat shock at 35 0C of adult tardigrades with HSP20-3 being one of the most highly upregulated gene in the whole transcriptome. Both R. varieornatus sHSPs and the human sHSP, CRYAB (HSPB5), were produced recombinantly for comparative structure-function studies. HSP20-3 exhibited a superior chaperone activity than human CRYAB in a heat-induced protein aggregation assay. Both tardigrade sHSPs also formed larger oligomers than CRYAB as assessed by size exclusion chromatography and transmission electron microscopy of negatively stained samples. Whilst both HSP20-3 and HSP20-6 formed particles that were variable in size and larger than the particles formed by CRYAB, only HSP20-3 formed filament-like structures. The particles and filament-like structures formed by HSP20-3 appear inter-related as the filament-like structures often had particles located at their ends. Sequence analyses identified two unique features; an insertion in the middle region of the N-terminal domain (NTD) and preceding the critical-sequence identified in CRYAB, as well as a repeated QNTN-motif located in the C-terminal domain of HSP20-3. The NTD insertion is expected to affect protein-protein interactions and subunit oligomerisation. Removal of the repeated QNTN-motif abolished HSP20-3 chaperone activity and also affected the assembly of the filament-like structures. We discuss the potential contribution of HSP20-3 to protein condensate formation.
Collapse
Affiliation(s)
- Mohammad Al-Ansari
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK; Department of Biochemistry, Health Sciences Centre, Kuwait University, Kuwait
| | - Taylor Fitzsimons
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK
| | - Wenbin Wei
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK.
| | - Martin W Goldberg
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK
| | - Takekazu Kunieda
- Department of Biological Sciences, The University of Tokyo, Japan
| | - Roy A Quinlan
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Hvidepil LKB, Møbjerg N. New insights into osmobiosis and chemobiosis in tardigrades. Front Physiol 2023; 14:1274522. [PMID: 37929212 PMCID: PMC10620314 DOI: 10.3389/fphys.2023.1274522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Tardigrades are renowned for their ability to enter the extremotolerant state of latent life known as cryptobiosis. While it is widely accepted that cryptobiosis can be induced by freezing (cryobiosis) and by desiccation (anhydrobiosis), the latter involving formation of a so-called tun, the exact mechanisms underlying the state-as well as the significance of other cryptobiosis inducing factors-remain ambiguous. Here, we focus on osmotic and chemical stress tolerance in the marine tidal tardigrade Echiniscoides sigismundi. We show that E. sigismundi enters the tun state following exposure to saturated seawater and upon exposure to locality seawater containing the mitochondrial uncoupler DNP. The latter experiments provide evidence of osmobiosis and chemobiosis, i.e., cryptobiosis induced by high levels of osmolytes and toxicants, respectively. A small decrease in survival was observed following simultaneous exposure to DNP and saturated seawater indicating that the tardigrades may not be entirely ametabolic while in the osmobiotic tun. The tardigrades easily handle exposure to ultrapure water, but hypo-osmotic shock impairs tun formation and when exposed to ultrapure water the tardigrades do not tolerate DNP, indicating that tolerance towards dilute solutions involves energy-consuming processes. We discuss our data in relation to earlier and more contemporary studies on cryptobiosis and we argue that osmobiosis should be defined as a state of cryptobiosis induced by high external osmotic pressure. Our investigation supports the hypothesis that the mechanisms underlying osmobiosis and anhydrobiosis are overlapping and that osmobiosis likely represents the evolutionary forerunner of cryptobiosis forms that involve body water deprivation.
Collapse
Affiliation(s)
| | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Hagelbäck P, Jönsson KI. An experimental study on tolerance to hypoxia in tardigrades. Front Physiol 2023; 14:1249773. [PMID: 37731547 PMCID: PMC10507709 DOI: 10.3389/fphys.2023.1249773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction: Tardigrades are small aquatic invertebrates with well documented tolerance to several environmental stresses, including desiccation, low temperature, and radiation, and an ability to survive long periods in a cryptobiotic state under arrested metabolism. Many tardigrade populations live in habitats where temporary exposure to hypoxia is expected, e.g., benthic layers or substrates that regularly undergo desiccation, but tolerance to hypoxia has so far not been thoroughly investigated in tardigrades. Method: We studied the response to exposure for hypoxia (<1 ppm) during 1-24 h in two tardigrade species, Richtersius cf. coronifer and Hypsibius exemplaris. The animals were exposed to hypoxia in their hydrated active state. Results: Survival was high in both species after the shortest exposures to hypoxia but tended to decline with longer exposures, with almost complete failure to recover after 24 h in hypoxia. R. cf. coronifer tended to be more tolerant than H. exemplaris. When oxygen level was gradually reduced from 8 to 1 ppm, behavioral responses in terms of irregular body movements were first observed at 3-4 ppm. Discussion: The study shows that both limno-terrestrial and freshwater tardigrades are able to recover after exposure to severe hypoxia, but only exposure for relatively short periods of time. It also indicates that tardigrade species have different sensitivity and response patterns to exposure to hypoxia. These results will hopefully encourage more studies on how tardigrades are affected by and respond to hypoxic conditions.
Collapse
Affiliation(s)
| | - K. Ingemar Jönsson
- Department of Environmental Science, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|