1
|
Rong Y, Wu Y, Chen Y, Liu Q, Ai L, Wu Y, Zhu Y, Zhang Y, Liu C, Ma Y, Tong X, Jin J, Li X, Zhou Y, Ji S, Zhang S, Fan H. ZAR1/2-Regulated Epigenetic Modifications are Essential for Age-Associated Oocyte Quality Maintenance and Zygotic Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410305. [PMID: 39755931 PMCID: PMC11848533 DOI: 10.1002/advs.202410305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/23/2024] [Indexed: 01/06/2025]
Abstract
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability. In addition to this known function, it is found that ZAR1/2 is required for oocyte epigenetic maturation and zygotic reprogramming. Zar1/2-deleted oocytes exhibited reduced levels of multiple histone modifications and of the expression of corresponding histone modifiers, along with over-condensed chromatin, leading to compromised minor zygotic genome activation and deficient embryo development following fertilization. Cytoplasmic ZAR1/2 participated in intranuclear epigenetic maturation by binding the transcripts encoding histone modifiers and regulating their stability and translational activity. Moreover, oocytes from aged mice exhibited similar histone-modification deficiencies as the Zar1/2-deleted oocytes. ZAR1/2 mRNA and protein levels are downregulated in oocytes from mice and women with advanced ages, suggesting ZAR1/2 as regulators of epigenetic changes with reproductive aging. This study presents a new nucleo-cytoplasmic interaction mechanism that is involved in preventing oocyte epigenetic aging. Further, ZAR1/2 represents potential gene targets for diagnosis and clinical interventions in age-associated deficiencies in oocyte and embryo development.
Collapse
Affiliation(s)
- Yan Rong
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Yu‐Ke Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Yingyan Chen
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Qing Liu
- Department of Traditional Chinese MedicineSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Leilei Ai
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Yun‐Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Yezhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Yin‐Li Zhang
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Chengkan Liu
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Yerong Ma
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Xiaomei Tong
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Jiamin Jin
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Xiaoxuan Li
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Yan Zhou
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Shu‐Yan Ji
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Songying Zhang
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Heng‐Yu Fan
- Department of Obstetrics and GynecologyZhejiang Key Laboratory of Precise Protection and Promotion of FertilityZhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseAssisted Reproduction UnitSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhou310058China
- Center for Biomedical ResearchShaoxing InstituteZhejiang UniversityShaoxing312000China
| |
Collapse
|
2
|
Akinsola OM, Musa AA, Muansangi L, Singh SP, Mukherjee S, Mukherjee A. Genomic insights into adaptation and inbreeding among Sub-Saharan African cattle from pastoral and agropastoral systems. Front Genet 2024; 15:1430291. [PMID: 39119582 PMCID: PMC11306176 DOI: 10.3389/fgene.2024.1430291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background In Sub-Saharan Africa (SSA), cattle are crucial for socioeconomic stability yet face numerous environmental stressors such as diseases, parasites, and extreme heat within pastoral and agropastoral systems. Despite their significance, gaps remain in understanding how genetic diversity and inbreeding influence traits essential for disease resistance and environmental adaptability. This study examines the genomic adaptations that enable SSA cattle to thrive under these conditions and assesses the impact of inbreeding on such adaptive traits. Methods We analyzed genomic data from 113 cattle across four breeds-Kuri, N'dama, Zebu-Fulani, and Zebu-Bororo-employing Runs of Homozygosity (ROH) and Integrated Haplotype Score (iHS) analyses to identify historical and recent genetic selections. Strict quality controls using PLINK software ensured accurate genomic pattern identification related to adaptation and inbreeding. Results ROH analysis revealed islands with genes such as RSAD2, CMPK2, and NOTCH1, which are involved in immune response and cellular stress management, highlighting regions of historical selection that have likely provided adaptive advantages in overcoming environmental and pathogenic stresses. In contrast, iHS analysis identified genes under recent selection like HIPK1, involved in stress response regulation, and EPHA5, which plays a crucial role in neural development and synaptic functions, potentially equipping these breeds with novel adaptations to ongoing and emergent environmental challenges. Conclusion This research confirms that selective pressures inherent in pastoral and agropastoral systems profoundly influence the genetic structure of SSA cattle. By delineating the genetic bases of key adaptive traits, our study offers crucial insights for targeted breeding programs to enhance cattle resilience and productivity. These findings provide a valuable framework for future genetic improvements and conservation strategies, crucial for sustainable livestock management and economic stability in SSA.
Collapse
Affiliation(s)
- Oludayo M. Akinsola
- Department of Theriogenology and Production, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | | | - Lal Muansangi
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Sanchit P. Singh
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Sabyasachi Mukherjee
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Anupama Mukherjee
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| |
Collapse
|
3
|
Judson JM, Hoekstra LA, Janzen FJ. Demographic history and genomic signatures of selection in a widespread vertebrate ectotherm. Mol Ecol 2024; 33:e17269. [PMID: 38234254 PMCID: PMC10922411 DOI: 10.1111/mec.17269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Environmental conditions vary greatly across large geographic ranges, and yet certain species inhabit entire continents. In such species, genomic sequencing can inform our understanding of colonization history and the impact of selection on the genome as populations experience diverse local environments. As ectothermic vertebrates are among the most vulnerable to environmental change, it is critical to understand the contributions of local adaptation to population survival. Widespread ectotherms offer an opportunity to explore how species can successfully inhabit such differing environments and how future climatic shifts will impact species' survival. In this study, we investigated the widespread painted turtle (Chrysemys picta) to assess population genomic structure, demographic history, and genomic signatures of selection in the western extent of the range. We found support for a substantial role of serial founder effects in shaping population genomic structure: demographic analysis and runs of homozygosity were consistent with bottlenecks of increasing severity from eastern to western populations during and following the Last Glacial Maximum, and edge populations were more strongly diverged and had less genetic diversity than those from the centre of the range. We also detected outlier loci, but allelic patterns in many loci could be explained by either genetic surfing or selection. While range expansion complicates the identification of loci under selection, we provide candidates for future study of local adaptation in a long-lived, widespread ectotherm that faces an uncertain future as the global climate continues to rapidly change.
Collapse
Affiliation(s)
- Jessica M. Judson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: W. K. Kellogg Biological Station, Departments of Fisheries and Wildlife & Integrative Biology, Michigan State University, Hickory Corners, MI 49060, USA
| | - Luke A. Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: W. K. Kellogg Biological Station, Departments of Fisheries and Wildlife & Integrative Biology, Michigan State University, Hickory Corners, MI 49060, USA
| |
Collapse
|
4
|
Yu M, Zhang S, Ma Z, Qiang J, Wei J, Sun L, Kocher TD, Wang D, Tao W. Disruption of Zar1 leads to arrested oogenesis by regulating polyadenylation via Cpeb1 in tilapia (Oreochromis niloticus). Int J Biol Macromol 2024; 260:129632. [PMID: 38253139 DOI: 10.1016/j.ijbiomac.2024.129632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.
Collapse
Affiliation(s)
- Miao Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shiyi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhisheng Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, United States of America
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Cui H, Zhu H, Ban W, Li Y, Chen R, Li L, Zhang X, Chen K, Xu H. Characterization of Two Gonadal Genes, zar1 and wt1b, in Hermaphroditic Fish Asian Seabass ( Lates calcarifer). Animals (Basel) 2024; 14:508. [PMID: 38338151 PMCID: PMC10854929 DOI: 10.3390/ani14030508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Zygote arrest-1 (Zar1) and Wilms' tumor 1 (Wt1) play an important role in oogenesis, with the latter also involved in testicular development and gender differentiation. Here, Lczar1 and Lcwt1b were identified in Asian seabass (Lates calcarifer), a hermaphrodite fish, as the valuable model for studying sex differentiation. The cloned cDNA fragments of Lczar1 were 1192 bp, encoding 336 amino acids, and contained a zinc-binding domain, while those of Lcwt1b cDNA were 1521 bp, encoding a peptide of 423 amino acids with a Zn finger domain belonging to Wt1b family. RT-qPCR analysis showed that Lczar1 mRNA was exclusively expressed in the ovary, while Lcwt1b mRNA was majorly expressed in the gonads in a higher amount in the testis than in the ovary. In situ hybridization results showed that Lczar1 mRNA was mainly concentrated in oogonia and oocytes at early stages in the ovary, but were undetectable in the testis. Lcwt1b mRNA was localized not only in gonadal somatic cells (the testis and ovary), but also in female and male germ cells in the early developmental stages, such as those of previtellogenic oocytes, spermatogonia, spermatocytes and spermatids. These results indicated that Lczar1 and Lcwt1b possibly play roles in gonadal development. Therefore, the findings of this study will provide a basis for clarifying the mechanism of Lczar1 and Lcwt1b in regulating germ cell development and the sex reversal of Asian seabass and even other hermaphroditic species.
Collapse
Affiliation(s)
- Han Cui
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Haoyu Zhu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Wenzhuo Ban
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Yulin Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Ruyi Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Lingli Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Xiaoling Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Kaili Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Hongyan Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
6
|
Heim A, Niedermeier ML, Stengel F, Mayer TU. The translation regulator Zar1l controls timing of meiosis in Xenopus oocytes. Development 2022; 149:278465. [DOI: 10.1242/dev.200900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Oocyte maturation and early embryo development occur in vertebrates in the near absence of transcription. Thus, sexual reproduction of vertebrates critically depends on the timely translation of mRNAs already stockpiled in the oocyte. Yet how translational activation of specific mRNAs is temporally coordinated is still incompletely understood. Here, we elucidate the function of Zar1l, a yet uncharacterized member of the Zar RNA-binding protein family, in Xenopus oocytes. Employing TRIM-Away, we demonstrate that loss of Zar1l accelerates hormone-induced meiotic resumption of Xenopus oocytes due to premature accumulation of the M-phase-promoting kinase cMos. We show that Zar1l is a constituent of a large ribonucleoparticle containing the translation repressor 4E-T and the central polyadenylation regulator CPEB1, and that it binds directly to the cMos mRNA. Partial, hormone-induced degradation of Zar1l liberates 4E-T from CPEB1, which weakens translational repression of mRNAs encoding cMos and likely additional M-phase-promoting factors. Thus, our study provides fundamental insights into the mechanisms that ensure temporally regulated translation of key cell cycle regulators during oocyte maturation, which is essential for sexual reproductivity.
Collapse
Affiliation(s)
- Andreas Heim
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
| | - Marie L. Niedermeier
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| | - Florian Stengel
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| | - Thomas U. Mayer
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| |
Collapse
|
7
|
Wu YK, Fan HY. Revisiting ZAR proteins: the understudied regulator of female fertility and beyond. Cell Mol Life Sci 2022; 79:92. [PMID: 35072788 PMCID: PMC11071961 DOI: 10.1007/s00018-022-04141-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Putative RNA-binding proteins (RBPs), zygote arrested-1 (ZAR1), and ZAR2 (also known as ZAR1L), have been identified as maternal factors that mainly function in oogenesis and embryogenesis. Despite divergence in their spatio-temporal expression among species, the CxxC structure of the C-terminus of ZAR proteins is highly conserved and is reported to be the functional domain for the activity of the RBPs of ZAR proteins. In oocytes from Xenopus laevis and zebrafish, ZAR proteins have been reported to bind to maternal transcripts and inhibit translation in immature growing oocytes, whereas in fully grown mouse oocytes, they promote the translation during meiotic maturation. Thus, ZAR1 and ZAR2 may be required for the maternal-to-zygotic transition by stabilizing the maternal transcriptome in oocytes with partial functional redundancy. In addition, recent studies have suggested non-ovarian expression and function of ZAR proteins, particularly their involvement in tumorigenesis. ZAR proteins are potentially associated with tumor suppressors and can serve as epigenetically inactivated cancer biomarkers. In this review, studies on Zar1/2 are systematically summarized, and some issues that require discussion and further investigation are introduced as perspectives.
Collapse
Affiliation(s)
- Yu-Ke Wu
- Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China.
| |
Collapse
|
8
|
Bebbere D, Albertini DF, Coticchio G, Borini A, Ledda S. The subcortical maternal complex: emerging roles and novel perspectives. Mol Hum Reprod 2021; 27:6311673. [PMID: 34191027 DOI: 10.1093/molehr/gaab043] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Since its recent discovery, the subcortical maternal complex (SCMC) is emerging as a maternally inherited and crucial biological structure for the initial stages of embryogenesis in mammals. Uniquely expressed in oocytes and preimplantation embryos, where it localizes to the cell subcortex, this multiprotein complex is essential for early embryo development in the mouse and is functionally conserved across mammalian species, including humans. The complex has been linked to key processes leading the transition from oocyte to embryo, including meiotic spindle formation and positioning, regulation of translation, organelle redistribution, and epigenetic reprogramming. Yet, the underlying molecular mechanisms for these diverse functions are just beginning to be understood, hindered by unresolved interplay of SCMC components and variations in early lethal phenotypes. Here we review recent advances confirming involvement of the SCMC in human infertility, revealing an unexpected relationship with offspring health. Moreover, SCMC organization is being further revealed in terms of novel components and interactions with additional cell constituents. Collectively, this evidence prompts new avenues of investigation into possible roles during the process of oogenesis and the regulation of maternal transcript turnover during the oocyte to embryo transition.
Collapse
Affiliation(s)
- Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | | | | | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
9
|
Deutschmeyer VE, Richter AM. The ZAR1 protein in cancer; from epigenetic silencing to functional characterisation and epigenetic therapy of tumour suppressors. Biochim Biophys Acta Rev Cancer 2020; 1874:188417. [PMID: 32828887 DOI: 10.1016/j.bbcan.2020.188417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
ZAR1, zygote arrest 1, is a zinc finger protein (C-terminus), which was initially identified in mouse oocytes. Later it was found that its expression is present in various human tissues e.g. lung and kidney. Interestingly, it was observed that in various tumour types the ZAR1 transcript is missing due to hypermethylation of its CpG island promoter, but not ZAR2. Since methylation of the ZAR1 promoter is described as a frequent event in tumourigenesis, ZAR1 could serve as a useful diagnostic marker in cancer screens. ZAR1 was described as a useful prognostic/diagnostic cancer marker for lung cancer, kidney cancer, melanoma and possibly liver carcinoma. Furthermore, ZAR1 was reactivated as a tumour suppressor by epigenetic therapy using CRISPR-dCas9 method. This method holds the potential to precisely target not only ZAR1 and reactivate tumour suppressors in a tailored cancer therapy. ZAR1 is highly conserved amongst vertebrates, especially its zinc finger, which is the relevant domain for its protein and RNA binding ability. ZAR1 is implicated in various cellular mechanisms including regulation of oocyte/embryo development, cell cycle control and mRNA binding, though little was known about the underlying mechanisms. ZAR1 was reported to regulate and activate translation through the binding to TCS translation control sequences in the 3'UTRs of its target mRNA the kinase WEE1. ZAR1 has a tumour suppressing function by inhibiting cell cycle progression. Here we review the current literature on ZAR1 focusing on structural, functional and epigenetic aspects. Characterising the cellular mechanisms that regulate the signalling pathways ZAR1 is involved in, could lead to a deeper understanding of tumour development and, furthermore, to new strategies in cancer treatment.
Collapse
Affiliation(s)
| | - Antje M Richter
- Institute for Genetics, University of Giessen, 35392 Giessen, Germany; Max-Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
| |
Collapse
|
10
|
Rong Y, Ji SY, Zhu YZ, Wu YW, Shen L, Fan HY. ZAR1 and ZAR2 are required for oocyte meiotic maturation by regulating the maternal transcriptome and mRNA translational activation. Nucleic Acids Res 2020; 47:11387-11402. [PMID: 31598710 PMCID: PMC6868374 DOI: 10.1093/nar/gkz863] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 01/01/2023] Open
Abstract
Zar1 was one of the earliest mammalian maternal-effect genes to be identified. Embryos derived from Zar1-null female mice are blocked before zygotic genome activation; however, the underlying mechanism remains unclear. By knocking out Zar1 and its homolog Zar2 in mice, we revealed a novel function of these genes in oocyte meiotic maturation. Zar1/2-deleted oocytes displayed delayed meiotic resumption and polar body-1 emission and a higher incidence of abnormal meiotic spindle formation and chromosome aneuploidy. The grown oocytes of Zar1/2-null mice contained decreased levels of many maternal mRNAs and displayed a reduced level of protein synthesis. Key maturation-associated changes failed to occur in the Zar1/2-null oocytes, including the translational activation of maternal mRNAs encoding the cell-cycle proteins cyclin B1 and WEE2, as well as maternal-to-zygotic transition (MZT) licensing factor BTG4. Consequently, maternal mRNA decay was impaired and MZT was abolished. ZAR1/2 bound mRNAs to regulate the translational activity of their 3′-UTRs and interacted with other oocyte proteins, including mRNA-stabilizing protein MSY2 and cytoplasmic lattice components. These results countered the traditional view that ZAR1 only functions after fertilization and highlight a previously unrecognized role of ZAR1/2 in regulating the maternal transcriptome and translational activation in maturing oocytes.
Collapse
Affiliation(s)
- Yan Rong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shu-Yan Ji
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ye-Zhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
11
|
Zar1 represses translation in Xenopus oocytes and binds to the TCS in maternal mRNAs with different characteristics than Zar2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1034-46. [PMID: 23827238 DOI: 10.1016/j.bbagrm.2013.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022]
Abstract
Maternal mRNAs are translationally regulated during early development. Zar1 and its closely related homolog, Zar2, are both crucial in early development. Xenopus laevis Zygote arrest 2 (Zar2) binds to the Translational Control Sequence (TCS) in maternal mRNAs and regulates translation. The molecular mechanism of Zar1 has not been described. Here we report similarities and differences between Xenopus Zar1 and Zar2. Analysis of Zar sequences in vertebrates revealed two Zar family members with conserved, characteristic amino acid differences in the C-terminal domain. The presence of only two vertebrate Zar proteins was supported by analyzing Zar1 synteny. We propose that the criteria for naming Zar sequences are based on the characteristic amino acids and the chromosomal context. We also propose reclassification of some Zar sequences. We found that Zar1 is expressed throughout oogenesis and is stable during oocyte maturation. The N-terminal domain of Zar1 repressed translation of a reporter construct in immature oocytes. Both Zar1 and Zar2 bound to the TCS in the Wee1 and Mos 3' UTRs using a zinc finger in the C-terminal domain. However, Zar1 had much higher affinity for RNA than Zar2. To show the functional significance of the conserved amino acid substitutions, these residues in Zar2 were mutated to those found in Zar1. We show that these residues contributed to the different RNA binding characteristics of Zar1 compared to Zar2. Our study shows that Zar proteins have generally similar molecular functions in the translational regulation of maternal mRNAs, but they may have different roles in early development.
Collapse
|
12
|
Xenopus laevis zygote arrest 2 (zar2) encodes a zinc finger RNA-binding protein that binds to the translational control sequence in the maternal Wee1 mRNA and regulates translation. Dev Biol 2012; 369:177-90. [PMID: 22732570 DOI: 10.1016/j.ydbio.2012.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/12/2012] [Accepted: 06/17/2012] [Indexed: 11/22/2022]
Abstract
Zygote arrest (Zar) proteins are crucial for early embryonic development, but their molecular mechanism of action is unknown. The Translational Control Sequence (TCS) in the 3' untranslated region (UTR) of the maternal mRNA, Wee1, mediates translational repression in immature Xenopus oocytes and translational activation in mature oocytes, but the protein that binds to the TCS and mediates translational control is not known. Here we show that Xenopus laevis Zar2 (encoded by zar2) binds to the TCS in maternal Wee1 mRNA and represses translation in immature oocytes. Using yeast 3 hybrid assays and electrophoretic mobility shift assays, Zar2 was shown to bind specifically to the TCS in the Wee1 3'UTR. RNA binding required the presence of Zn(2+) and conserved cysteines in the C-terminal domain, suggesting that Zar2 contains a zinc finger. Consistent with regulating maternal mRNAs, Zar2 was present throughout oogenesis, and endogenous Zar2 co-immunoprecipitated endogenous Wee1 mRNA from immature oocytes, demonstrating the physiological significance of the protein-RNA interaction. Interestingly, Zar2 levels decreased during oocyte maturation. Dual luciferase reporter tethered assays showed that Zar2 repressed translation in immature oocytes. Translational repression was relieved during oocyte maturation and this coincided with degradation of Zar2 during maturation. This is the first report of a molecular function of zygote arrest proteins. These data show that Zar2 contains a zinc finger and is a trans-acting factor for the TCS in maternal mRNAs in immature Xenopus oocytes.
Collapse
|
13
|
Misra S, Sharma S, Agarwal A, Khedkar SV, Tripathi MK, Mittal MK, Chaudhuri G. Cell cycle-dependent regulation of the bi-directional overlapping promoter of human BRCA2/ZAR2 genes in breast cancer cells. Mol Cancer 2010; 9:50. [PMID: 20202217 PMCID: PMC2842238 DOI: 10.1186/1476-4598-9-50] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 03/04/2010] [Indexed: 01/23/2023] Open
Abstract
Background BRCA2 gene expression is tightly regulated during the cell cycle in human breast cells. The expression of BRCA2 gene is silenced at the G0/G1 phase of cell growth and is de-silenced at the S/G2 phase. While studying the activity of BRCA2 gene promoter in breast cancer cells, we discovered that this promoter has bi-directional activity and the product of the reverse activity (a ZAR1-like protein, we named ZAR2) silences the forward promoter at the G0/G1 phase of the cell. Standard techniques like cell synchronization by serum starvation, flow cytometry, N-terminal or C-terminal FLAG epitope-tagged protein expression, immunofluorescence confocal microscopy, dual luciferase assay for promoter evaluation, and chromatin immunoprecipitation assay were employed during this study. Results Human BRCA2 gene promoter is active in both the forward and the reverse orientations. This promoter is 8-20 fold more active in the reverse orientation than in the forward orientation when the cells are in the non-dividing stage (G0/G1). When the cells are in the dividing state (S/G2), the forward activity of the promoter is 5-8 folds higher than the reverse activity. The reverse activity transcribes the ZAR2 mRNA with 966 nt coding sequence which codes for a 321 amino acid protein. ZAR2 has two C4 type zinc fingers at the carboxyl terminus. In the G0/G1 growth phase ZAR2 is predominantly located inside the nucleus of the breast cells, binds to the BRCA2 promoter and inhibits the expression of BRCA2. In the dividing cells, ZAR2 is trapped in the cytoplasm. Conclusions BRCA2 gene promoter has bi-directional activity, expressing BRCA2 and a novel C4-type zinc finger containing transcription factor ZAR2. Subcellular location of ZAR2 and its expression from the reverse promoter of the BRCA2 gene are stringently regulated in a cell cycle dependent manner. ZAR2 binds to BRCA2/ZAR2 bi-directional promoter in vivo and is responsible, at least in part, for the silencing of BRCA2 gene expression in the G0/G1 phase in human breast cells.
Collapse
Affiliation(s)
- Smita Misra
- Division of Biomedical Sciences, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Michailidis G, Argiriou A, Avdi M. Expression of chicken zygote arrest 1 (Zar1) and Zar1-like genes during sexual maturation and embryogenesis. Vet Res Commun 2010; 34:173-84. [PMID: 20111996 DOI: 10.1007/s11259-010-9343-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2010] [Indexed: 12/28/2022]
Abstract
Maternal mRNAs, which are expressed in oocytes, play an important role in the success of early embryo development, as they allow the first cleavages to occur. Zygote arrest 1 (Zar1) is an oocyte-specific maternal-effect gene that functions at the oocyte-to-embryo transition in many vertebrate species including human, pig, cattle, sheep, mouse, rat, frog and zebrafish. Recently, through in silico studies, a gene structurally related to Zar1, called Zar1-like has been identified in many vertebrates, including the chicken. The objectives of this study were to investigate the expression of the chicken Zar1 and Zar1-like genes in chicken tissues and embryos and to determine whether sexual maturation affects their mRNA abundance. RNA was extracted from various organs of chickens aged from one month up to two years old and from chicken embryos until day ten of embryonic development. Expression analysis of the genes was performed using RT-PCR and real-time PCR. RT-PCR analysis revealed that both genes were preferentially expressed in chicken oocytes, ovary and testes and in embryos during embryonic development. Quantitative real-time PCR analysis revealed a significant up regulation of Zar1 in the mature ovary, and also a significant up regulation of Zar1 and Zar1-like genes in the testes of sexually mature roosters, suggesting a key role of these genes in the chicken fertility. In contrast, expression of Zar1-like was not affected by age in the chicken ovary. Our results indicate that the chicken Zar1 and Zar1-like transcripts are co-expressed in high levels in the chicken gonads. In addition their expression beyond the stage of embryonic genome activation suggests an embryonic and not only a maternal origin of these transcripts.
Collapse
Affiliation(s)
- Georgios Michailidis
- Laboratory of Physiology of Reproduction of Farm Animals, Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| | | | | |
Collapse
|
15
|
Hu J, Wang F, Zhu X, Yuan Y, Ding M, Gao S. Mouse ZAR1-like (XM_359149) colocalizes with mRNA processing components and its dominant-negative mutant caused two-cell-stage embryonic arrest. Dev Dyn 2009; 239:407-24. [DOI: 10.1002/dvdy.22170] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
16
|
Nakajima Y, Okamoto H, Kubo T. Expression cloning of Xenopus zygote arrest 2 (Xzar2) as a novel epidermalization-promoting factor in early embryos of Xenopus laevis. Genes Cells 2009; 14:583-95. [PMID: 19371384 DOI: 10.1111/j.1365-2443.2009.01291.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In vertebrates, BMPs are known to induce epidermal fate at the expense of neural fate. To further explore the molecular mechanisms of epidermal differentiation, we have developed an expression cloning system for isolating cDNAs that encode intrinsic proteins with epidermal-inducing activity. Under our conditions, 92.5% of the dissociated animal cap cells treated with the conditioned medium from H(2)O-injected control oocytes differentiated into neural tissue, which developed neural fibers and expressed a neural marker (NCAM). In contrast, when dissociated animal cap cells were treated with the supernatant collected from the culture of BMP-4 mRNA-injected oocytes, the microcultures differentiated into epidermal tissue, which developed cilium. The cells expressed an epidermal marker (keratin), but not NCAM. Using the dissociated animal cap cells in a functional screening system, we cloned a cDNA encoding a novel polypeptide, Xenopus zygote arrest 2 (Xzar2). Over-expression of Xzar2 caused anterior defects and suppressed expressions of the neural markers. The epidermalization-promoting activity of Xzar2 was substantially not affected by over-expression of the BMP signaling antagonists Smad6 and 7, and a dominant negative receptor for BMP (tBR). Our results suggest that Xzar2 is involved in epidermal fate determination mainly through signaling pathways distinct from that of BMP-Smad during early embryogenesis.
Collapse
Affiliation(s)
- Yuka Nakajima
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | | | | |
Collapse
|