1
|
Zhang J, Wu X. The Whole Genome DNA Methylation Signatures of Hindlimb Muscles in Chinese Alligators during Hibernation and Active Periods. Animals (Basel) 2024; 14:1972. [PMID: 38998084 PMCID: PMC11240547 DOI: 10.3390/ani14131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Many ectotherms hibernate to increase their chances of survival during harsh winter conditions. The role of DNA methylation in regulating gene expression related to hibernation in ectotherms remains unclear. Here, we employed whole-genome bisulfite sequencing (WGBS) technology to construct a comprehensive genome-wide DNA methylation landscape of the hindlimb muscles in the Chinese alligator during hibernation and active periods. The results indicated that methylation modifications were most abundant at CG sites, identifying 9447 differentially methylated regions (DMRs) and 2329 differentially methylated genes (DMGs). KEGG pathway enrichment analysis of the DMGs revealed significant enrichment in major pathways such as the neurotrophin signaling pathway, the MAPK signaling pathway, the GnRH signaling pathway, the biosynthesis of amino acids, and the regulation of the actin cytoskeleton, which are closely related to lipid metabolism, energy metabolism, and amino acid metabolism. Among these, 412 differentially methylated genes were located in promoter regions, including genes related to energy metabolism such as ATP5F1C, ATP5MD, PDK3, ANGPTL1, and ANGPTL2, and genes related to ubiquitin-proteasome degradation such as FBXO28, FBXO43, KLHL40, and PSMD5. These findings suggest that methylation in promoter regions may play a significant role in regulating the adaptive hibernation mechanisms in the Chinese alligator. This study contributes to a further understanding of the epigenetic mechanisms behind the hibernation of the Chinese alligator.
Collapse
Affiliation(s)
- Jihui Zhang
- School of Food Science and Biology Engineering, Wuhu Institute of Technology, Wuhu 241000, China
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xiaobing Wu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
2
|
Zeng LF, Lee J, Lim G, Yang YF, Lin RL, Yin SJ, Wang W, Park YD. Characterization and tissue expression analysis of mitochondrial creatine kinases (types I and II) from Pelodiscus sinensis. J Biomol Struct Dyn 2023; 41:1388-1402. [PMID: 34939522 DOI: 10.1080/07391102.2021.2020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this study was to characterize the functions of the mitochondrial creatine kinases in the Chinese soft-shelled turtle Pelodiscus sinensis (PSCK-MT1 and PSCK-MT2) to characterize function in relation to hibernation. Computational prediction via molecular dynamics simulations showed that PSCK-MT1 had stronger kinase- and creatine-binding affinity than PSCK-MT2. We measured PSCK-MT1 and PSCK-MT2 levels in the myocardium, liver, spleen, lung, kidney, and ovary of P. sinensis before and after hibernation and found that the expression of these enzymes was the most significantly upregulated in the ovary. We enumerated the ovarian follicles and evaluated the physiological indices of P. sinensis and discovered that fat was the main form of energy storage in P. sinensis. Moreover, both PSCK-MTs promoted follicular development during hibernation. Immunohistochemistry was used to study follicular development and revealed that both PSCK-MTs were expressed primarily in the follicular fluid and granulosa layer before and after hibernation. We found that PSCK-MT1 and PSCK-MT2 could play important roles in ovarian follicular development under hibernation. Hence, both PSCK-MTs probably function effectively under the conditions of low temperature and oxygen during hibernation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Li-Fang Zeng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Gyutae Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Yu-Fei Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Run-Lan Lin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China.,Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| |
Collapse
|
3
|
Chen X, Mi J, Huang H, Wang J, Wu Y, Wu X, Zhang S. Ghrelin and ghrelin receptor (GHSR) in Chinese alligator, alligator sinensis: Molecular characterization, tissue distribution and mRNA expression changes during the active and hibernating periods. Gen Comp Endocrinol 2022; 327:114097. [PMID: 35853503 DOI: 10.1016/j.ygcen.2022.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
The Chinese alligator (Alligator sinensis) is a freshwater crocodilian endemic to China. So far, the endocrine regulation of feeding and growth in Chinese alligator is poorly understood. In this study, the molecular structure and tissue expression profiles of ghrelin and its receptor GHSR in the Chinese alligator were characterized for the first time. The full-length cDNA of ghrelin was 1770 bp, including a 37 bp 5 '-UTR (untranslated region), a 435 bp ORF (open reading frame) and a 1298 bp 3 '-UTR. The ORF encodes a ghrelin precursor, which consists of 145 amino acid residues, including a signal peptide with 52 amino acid residues at the N-terminus, a mature peptide with 28 amino acid residues, and a possibly obestain at the C-terminus. The full-length cDNA of GHSR was 3961 bp, including a 5'-UTR of 375-bp, an ORF of 1059-bp and a 3' -UTR of 2527-bp. The ORF encodes a protein of 352 amino acid residues containing seven transmembrane domains, with multiple N glycosylation modification sites and conserved cysteine residue sites. The active core "GSSF" of Chinese alligator ghrelin was identical to that of mammals and birds, and the ghrelin binding site of GHSR was similar to that of mammals. The amino acid sequences of both ghrelin and GHSR share high identity with American alligator (Alligator mississippiensis) and birds. Ghrelin was highly expressed in cerebrum, mesencephalon, hypothalamus and multiple peripheral tissues, including lung, stomach and intestine, suggesting that it could play functions in paracrine and/or autocrine manners in addition to endocrine manner. GHSR expression level was higher in hypothalamus, epencephalon and medulla oblongata, and moderate in multiple peripheral tissues including lung, kindey, stomach and oviduct, implicating that ghrelin/GHSR system may participate in the regulation of energy balance, food intake, water and mineral balance, gastrointestinal motility, gastric acid secretion and reproduction. During hibernation, the expression of ghrelin and GHSR in the brain was significantly increased, while ghrelin was significantly decreased in heart, liver, lung, stomach, pancreas and ovary, and GHSR was significantly decreased in heart, liver, spleen, lung, kindey, stomach, ovary and oviduct. These temporal changes in ghrelin and GHSR expression could facilitate the physiological adaption to the hibernation of Chinese alligator. Our study could provide basic data for further studies on the regulation of feeding, physiological metabolism and reproduction of Chinese alligator, which could also be useful for the improvement of artificial breeding of this endangered species.
Collapse
Affiliation(s)
- Xianxian Chen
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Jicong Mi
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Hongbin Huang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Jing Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yu Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shengzhou Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
4
|
Zhang J, Cai R, Liang J, Izaz A, Shu Y, Pan T, Wu X. Molecular mechanism of Chinese alligator (Alligator sinensis) adapting to hibernation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:32-49. [PMID: 33231934 DOI: 10.1002/jez.b.23013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Hibernation is a physiological state for Chinese alligators to cope with cold weather. In mammals, gene expression changes during hibernation and their regulatory mechanisms have been extensively studied, however, these studies in reptiles are still rare. Here, integrated analysis of messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) reveals the molecular mechanisms of the hypothalamus, liver, and skeletal muscle in hibernating and active individuals. During hibernation, the number of genes increased in the hypothalamus, liver, and skeletal muscle was 585, 282, and 297, while the number of genes decreased was 215, 561, and 627, respectively, as compared with active individuals. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the differential expressed genes were mainly enriched in DNA damage repair, biological rhythm, energy metabolism, myoprotein degradation, and other related items and pathways. Besides, 4740 miRNAs were identified in three tissues. Through the comprehensive analysis of miRNA and mRNA abundance profiles, 12,291, 6997, and 8232 miRNA-mRNA pairs all showed a negative correlation in the hypothalamus, liver, and skeletal muscle, respectively. Some miRNA target genes were related tobiological rhythm and energy metabolism, suggesting that miRNA may play an important role in the physiological metabolism of the hibernating adaptability of Chinese alligators. Moreover, 402, 230, and 130 differentially expressed lncRNAs were identified in the hypothalamus, liver, and skeletal muscle, respectively. The targeting relationship of four lncRNA-mRNA pairs were predicted, with the main function of target genes involved in the amino acid transportation. These results are helpful to further understand the molecular regulatory basis of the hibernation adaptation in Chinese alligators.
Collapse
Affiliation(s)
- Jihui Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ruiqing Cai
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juanjuan Liang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ali Izaz
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tao Pan
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiaobing Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
5
|
Lin JQ, Yu J, Jiang H, Zhang Y, Wan QH, Fang SG. Multi-omics analysis reveals that natural hibernation is crucial for oocyte maturation in the female Chinese alligator. BMC Genomics 2020; 21:774. [PMID: 33167853 PMCID: PMC7653761 DOI: 10.1186/s12864-020-07187-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hibernation in an appropriate environment not only is important for the survival of hibernators in winter, but also is crucial for breeding in the following season for many hibernating species. However, the genetic and epigenetic mechanism underlying this process remain unclear. In the current study, we performed an integrative multi-omics analysis of gonads collected from Chinese alligators that overwintered in wild cave and artificial warmroom to explore transcriptomic and epigenomic alternations in these organs. RESULTS The data revealed that in the breeding season, female alligators were more strongly affected in terms of gene expression than males by non-hibernation because of overwintering in a warm room, especially for genes related to oocyte maturation, and this effect commenced in winter with the downregulation of STAR, which is the rate limiting factor of steroid biosynthesis. Further, miRNAs were found to play essential roles in this negative effect of overwintering in the warm room on hibernation. The upregulated miRNAs likely were responsible for the suppression of oocyte maturation in the breeding season. Finally, DNA methylome changes, especially hypomethylation, were found to play an important role in the alterations in ovarian function-related gene expression induced by non-hibernation. CONCLUSIONS Our study revealed the crucial role of hibernation quality for oocyte maturation in the Chinese alligator and the underlying genetic and epigenetic mechanisms, and highlights the importance of habitat, and especially, the overwintering site, in the conservation of not only the Chinese alligator, but also other endangered hibernators.
Collapse
Affiliation(s)
- Jian-Qing Lin
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jun Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hua Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yi Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiu-Hong Wan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
6
|
Zhang R, Nie H, Duan S, Yan P, Izaz A, Wang R, Zhou Y, Wu X. Cloning, characterisation and expression profile of kisspeptin1 and the kisspeptin1 receptor in the hypothalamic–pituitary–ovarian axis of Chinese alligator Alligator sinensis during the reproductive cycle. Reprod Fertil Dev 2020; 32:792-804. [DOI: 10.1071/rd19332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
Kisspeptin1 (Kiss1), a product of the Kiss1 gene, plays an important role in the regulation of reproduction in vertebrates by activating the Kiss1 receptor (Kiss1R) and its coexpression with gonadotrophin-releasing hormone (GnRH) in GnRH neurons. The purpose of this study was to clone the Kiss1 and Kiss1R genes found in the brain of Alligator sinensis and to explore their relationship with reproduction. The full-length cDNA of Kiss1 is 816bp, the open reading frame (ORF) is 417bp and the gene encodes a 138-amino acid precursor protein. The full-length cDNA of Kiss1R is 2348bp, the ORF is 1086bp and the gene encodes a 361-amino acid protein. Quantitative polymerase chain reaction showed that, except for Kiss1R expression in the hypothalamus, the expression of Kiss1 and Kiss1Rduring the reproductive period of A. sinensis was higher than that in the hypothalamus, pituitary gland and ovary during the hibernation period. The changes in GnRH2 mRNA in the hypothalamus were similar to those of GnRH1 and peaked during the reproductive period. This study confirms the existence of Kiss1 and Kiss1R in A. sinensis and the findings strongly suggest that Kiss1 and Kiss1R may participate in the regulation of GnRH secretion in the hypothalamus of alligators during the reproductive period. Furthermore, this is the first report of the full-length cDNA sequences of Kiss1 and Kiss1R in reptiles.
Collapse
|
7
|
Tang KY, Wang ZW, Wan QH, Fang SG. Metagenomics Reveals Seasonal Functional Adaptation of the Gut Microbiome to Host Feeding and Fasting in the Chinese Alligator. Front Microbiol 2019; 10:2409. [PMID: 31708889 PMCID: PMC6824212 DOI: 10.3389/fmicb.2019.02409] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022] Open
Abstract
As a natural hibernator, the Chinese alligator (Alligator sinensis) is an ideal and intriguing model to investigate changes in microbial community structure and function caused by hibernation. In this study, we used 16S rRNA profiling and metagenomic analysis to compare the composition, diversity, and functional capacity in the gut microbiome of hibernating vs. active Chinese alligators. Our results show that gut microbial communities undergo seasonal restructuring in response to seasonal cycles of feeding and fasting in the Chinese alligator, but this animal harbors a core gut microbial community primarily dominated by Proteobacteria, Fusobacteria, Bacteroidetes, and Firmicutes across the gut regions. During hibernation, there is an increase in the abundance of bacterial taxa (e.g., the genus Bacteroides) that can degrade host mucin glycans, which allows adaptation to winter fasting. This is accompanied by the enrichment of mucin oligosaccharide-degrading enzyme and carbohydrate-active enzyme families. In contrast, during the active phase (feeding), active Chinese alligators exhibit a carnivore gut microbiome dominated by Fusobacteria, and there is an increase in the relative abundance of bacteria (e.g., Cetobacterium somerae) with known proteolytic and amino acids-fermentating functions that improve host protein-rich food digestion efficiency. In addition, seasonal variations in the expression of β-defensins play a protective role in intestinal immunity. These findings provide insights into the functional adaptations of host-gut microbe symbioses to seasonal dietary shifts to maintain gut homeostasis and health, especially in extreme physiological states.
Collapse
Affiliation(s)
- Ke-Yi Tang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhen-Wei Wang
- Changxing Yinjiabian Chinese Alligator Nature Reserve, Changxing, China
| | - Qiu-Hong Wan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Wang Y, Liu X, Zhao J, Ouyang S, Li W, Zhu J, Zhu Y, Zhu X. Molecular cloning of ESR1, BMPR1B, and FOXL2 and differential expressions depend on maternal age and size during breeding season in cultured Asian yellow pond turtle (Mauremys mutica). Comp Biochem Physiol B Biochem Mol Biol 2019; 232:108-120. [DOI: 10.1016/j.cbpb.2019.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
9
|
Ashton SE, Vernasco BJ, Moore IT, Parker MR. Sex and seasonal differences in mRNA expression of estrogen receptor α (ESR1) in red-sided garter snakes (Thamnophis sirtalis parietalis). Gen Comp Endocrinol 2018; 267:59-65. [PMID: 29807033 DOI: 10.1016/j.ygcen.2018.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/30/2018] [Accepted: 05/24/2018] [Indexed: 11/30/2022]
Abstract
Estrogens are important regulators of reproductive physiology including sexual signal expression and vitellogenesis. For the regulation to occur, the hormone must bind and activate receptors in target tissues, and expression of the receptors can vary by sex and/or season. By simultaneously comparing circulating hormone levels with receptor expression, a more complete understanding of hormone action can be gained. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), provides an excellent opportunity to study the interaction between sex steroid hormones and receptor expression in addition to sexual dimorphism and seasonality. During the spring mating season, male garter snakes rely exclusively on the female's skin-based, estrogen-dependent sex pheromone to direct courtship. Males can be stimulated to produce this sexual attractiveness pheromone by treatment with estradiol (E2), which also induces male vitellogenesis. Estrogen receptors (ESRs) are required to transduce the effects of estrogens, thus we used quantitative RT-PCR to analyze expression of ESR alpha (ERα; gene ESR1) mRNA in the skin and liver of wild caught male and female garter snakes across simulated spring and fall conditions in the laboratory. While ESR1 was present in the skin of both sexes, there were no sex or seasonal differences in expression levels. Liver expression of ESR1, however, was sexually dimorphic, with females showing greatest expression in fall when circulating E2 concentrations were lowest. There were no statistically significant correlations between E2 and ESR1 expression. Our data suggest that the skin of both sexes is sensitive to estrogen signaling and thus the production of sex pheromone is dependent on bioavailable levels of E2. Female expression of ESR1 in the liver may increase in the fall to prime energy storage mechanisms required for vitellogenesis the following year.
Collapse
Affiliation(s)
- Sydney E Ashton
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States; Graduate Program in Neuroscience, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - M Rockwell Parker
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States.
| |
Collapse
|
10
|
Zhang R, Zhang Y, Wu M, Yan P, Izaz A, Wang R, Zhu H, Zhou Y, Wu X. Molecular cloning of androgen receptor and gene expression of sex steroid hormone receptors in the brain of newborn Chinese alligator (Alligator sinensis). Gene 2018; 674:178-187. [DOI: 10.1016/j.gene.2018.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
|
11
|
Liu XT, Lin X, Mi YL, Zeng WD, Zhang CQ. Age-related changes of yolk precursor formation in the liver of laying hens. J Zhejiang Univ Sci B 2018; 19:390-399. [PMID: 29732750 DOI: 10.1631/jzus.b1700054] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A rapid decline in egg production of laying hens begins after 480 d of age. Such a rapid decrease results predominantly from the ovarian aging, accompanied by endocrine changes, decreased yolk synthesis and accumulation, and the reduction in follicles selected into the preovulatory hierarchy. In this study, hens at 90, 150, 280, and 580 d old (D90, D150, D280, and D580, respectively) were compared for yolk precursor formation in the liver to elucidate effects of aging on laying performance. The results showed that liver lipid synthesis increased remarkably in hens from D90 to D150, but decreased sharply at D580 as indicated by the changes in triglyceride (TG) levels. This result was consistent with the age-related changes of the laying performance. The levels of liver antioxidants and total antioxidant capacity decreased significantly in D580 hens and the methane dicarboxylic aldehyde in D580 hens was much higher than that at other stages. The serum 17β-estradiol level increased from D90 to D280, but decreased at D580 (P<0.05). The expression of estrogen receptor α and β mRNAs in the liver displayed similar changes to the serum 17β-estradiol in D580 hens. Expressions of the genes related to yolk precursor formation and enzymes responsible for fat acid synthesis were all decreased in D580 hens. These results indicated that decreased yolk precursor formation in the liver of the aged hens resulted from concomitant decreases of serum 17β-estradiol level, transcription levels of estrogen receptors and critical genes involved in yolk precursor synthesis, and liver antioxidant status.
Collapse
Affiliation(s)
- Xing-Ting Liu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Lin
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Ling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Dong Zeng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai-Qiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Gao Y, Yang C, Gao H, Wang L, Yang C, Ji H, Dong W. Molecular characterisation of oestrogen receptor ERα and the effects of bisphenol A on its expression during sexual development in the Chinese giant salamander (Andrias davidianus). Reprod Fertil Dev 2018; 31:261-271. [PMID: 30092913 DOI: 10.1071/rd18107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to characterise the molecular structure of the oestrogen receptor ERα and to evaluate the effect of bisphenol A (BPA) on ERα expression during sexual development of the Chinese giant salamander (Andrias davidianus). The ERα cDNA of A. davidianus includes an open reading frame of 1755bp (encoding 584 amino acids), a 219-bp 5' untranslated region (UTR) and a 611-bp 3'UTR. A polyadenylation signal was not found in the 3'UTR. Amino acid sequence analysis showed high homology between ERα of A. davidianus and that of other amphibians, such as Andrias japonicas (99.66% identity) and Rana rugose (81.06% identity). In 3-year-old A. davidianus, highest ERα expression was observed in the liver and gonads. During different developmental stages in A. davidianus (from 1 to 3 years of age), ERα expression in the testes increased gradually. ERα was localised in the epithelial cells of seminiferous lobules and in interstitial cells. ERα-positive cells were more abundant in the interstitial tissue during testicular development. ERα was located in the nucleus of oocytes during ovary development. We found that the sex of 6-month-old A. davidianus larvae could not be distinguished anatomically. The sex ratio did not change after larvae were treated with 10μM BPA for 1 month. However, BPA treatment reduced bodyweight and ERα expression in the gonads in male larvae.
Collapse
Affiliation(s)
- Yao Gao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Chenhao Yang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Huihui Gao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Liqing Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Changming Yang
- Animal Husbandry and Veterinary Station of Chenggu County, Wenhua Road, Hanzhong, Shaanxi, 723200, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Verderame M, Scudiero R. A comparative review on estrogen receptors in the reproductive male tract of non mammalian vertebrates. Steroids 2018; 134:1-8. [PMID: 29627338 DOI: 10.1016/j.steroids.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/04/2023]
Abstract
Estrogen receptors alpha (ERα) and beta (ERβ) are transcription factors known to be involved in the regulation of many complex physiological processes in mammals. They are expressed primarily in the reproductive tract of all vertebrates females, thus indicating important and conserved functions in female reproductive success. ERs are also present in physiological different tissues as bone, brain, liver, skin and adipose tissues, in both females and males. In the latter, ERs have been found also in the genital tract, supporting the findings of a complex role for estrogen in spermatogenesis and, more generally, in male reproduction. This review provides an overview and update on ERα and ERβ expression and synthesis in male reproductive tract of non-mammalian vertebrates, with focus on their role in germ cells proliferation, maturation and survival. Data from studies on fish, amphibians, reptiles and birds were collated and common or species-specific distribution highlighted. The widespread distribution of estrogen receptors in testicular cells and ducts of all vertebrates so far investigated suggests that whatever are the roles that estrogens may exert on these structures, they are phylogenetically conserved and are possibly related to the physiological support given to achieve male reproductive success.
Collapse
Affiliation(s)
- Mariailaria Verderame
- Department of Biology, University Federico II, Via Mezzocannone 8, 80134 Napoli, Italy.
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Mezzocannone 8, 80134 Napoli, Italy
| |
Collapse
|
14
|
Weikard R, Hadlich F, Hammon HM, Frieten D, Gerbert C, Koch C, Dusel G, Kuehn C. Long noncoding RNAs are associated with metabolic and cellular processes in the jejunum mucosa of pre-weaning calves in response to different diets. Oncotarget 2018; 9:21052-21069. [PMID: 29765519 PMCID: PMC5940403 DOI: 10.18632/oncotarget.24898] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/25/2018] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) emerged as important regulatory component of mechanisms involved in gene expression, chromatin modification and epigenetic processes, but they are rarely annotated in the bovine genome. Our study monitored the jejunum transcriptome of German Holstein calves fed two different milk diets using transcriptome sequencing (RNA-seq). To identify potential lncRNAs within the pool of unknown transcripts, four bioinformatic lncRNA prediction tools were applied. The intersection of the alignment-free lncRNA prediction tools (CNCI, PLEK and FEELnc) predicted 1,812 lncRNA transcripts concordantly comprising a catalogue of 1,042 putative lncRNA loci expressed in the calves’ intestinal mucosa. Nine lncRNA loci were differentially expressed (DE lncRNAs) between both calf groups. To elucidate their biological function, we applied a systems biology approach that combines weighted gene co-expression network analysis with functional enrichment and biological pathway analysis. Four DE lncRNAs were found to be strongly correlated with a gene network module (GNM) enriched for genes from canonical pathways of remodeling of epithelial adherens junction, tight junction and integrin signaling. Another DE lncRNA was strongly correlated with a GNM enriched for genes associated with energy metabolism and maintaining of cellular homeostasis with a focus on mitochondrial processes. Our data suggest that these DE lncRNAs may play potential regulatory roles in modulating biological processes associated with energy metabolism pathways and cellular signaling processes affecting the barrier function of intestinal epithelial cells of calves in response to different feeding regimens in the pre-weaning period.
Collapse
Affiliation(s)
- Rosemarie Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Harald M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Caroline Gerbert
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - Georg Dusel
- University of Applied Sciences, Bingen, Germany
| | - Christa Kuehn
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| |
Collapse
|
15
|
Sun H, Zuo X, Sun L, Yan P, Zhang F, Xue H, Li E, Zhou Y, Wu R, Wu X. Insights into the seasonal adaptive mechanisms of Chinese alligators (Alligator sinensis) from transcriptomic analyses. AUST J ZOOL 2018. [DOI: 10.1071/zo18005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Chinese alligator (Alligator sinensis) is an endemic and rare species in China, and is considered to be one of the most endangered vertebrates in the world. It is known to hibernate, an energy-saving strategy against cold temperatures and food deprivation. Changes in gene expression during hibernation remain largely unknown. To understand these complex seasonal adaptive mechanisms, we performed a comprehensive survey of differential gene expression in heart, skeletal muscle, and kidney of hibernating and active Chinese alligators using RNA-Sequencing. In total, we identified 4780 genes differentially expressed between the active and hibernating periods. GO and KEGG pathway analysis indicated the likely role of these differentially expressed genes (DEGs). The upregulated DEGs in the active Chinese alligator, CSRP3, MYG and PCKGC, may maintain heart and skeletal muscle contraction, transport and storage of oxygen, and enhance the body’s metabolism, respectively. The upregulated DEGs in the dormant Chinese alligator, ADIPO, CIRBP and TMM27, may improve insulin sensitivity and glucose/lipid metabolism, protect cells against harmful effects of cold temperature and hypoxia, regulate amino acid transport and uptake, and stimulate the proliferation of islet cells and the secretion of insulin. These results provide a foundation for understanding the molecular mechanisms of the seasonal adaptation required for hibernation in Chinese alligators, as well as effective information for other non-model organisms research.
Collapse
|
16
|
Tripathy M, Rai U. Temporal expression and gonadotropic regulation of aromatase and estrogen receptors in the ovary of wall lizard, Hemidactylus flaviviridis: Correlation with plasma estradiol and ovarian follicular development. Steroids 2017; 128:23-31. [PMID: 29042199 DOI: 10.1016/j.steroids.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/09/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022]
Abstract
The current study in Indian wall lizard Hemidactylus flaviviridis for the first time demonstrates the reproductive phase-dependent expression pattern of aromatase (cyp19) and estrogen receptor subtypes (er-α and er-β) as well as their gonadotropic regulation in the ovary of a squamate. The expression of cyp19 remained low during regressed phase, increased markedly in recrudescent and declined sharply in breeding phase. Further, temporal profile of plasma estradiol 17-β (E2) was found to be relatively parallel to the expression pattern of ovarian cyp19. The expression pattern of estrogen receptors in the ovary showed subtype-specific variation along the reproductive cycle. Expression of ovarian er-α remained high from regressed to late recrudescence, while er-β expression that was low during regression dramatically increased with the initiation of follicular growth in early recrudescence and remained high until late recrudescence. Nonetheless, expression of both the receptors declined during breeding phase when ovary contained vitellogenic follicle. Regarding gonadotropic regulation, short-term treatment with Follicle stimulating hormone (3 injections of FSH) increased the ovarian expression of cyp19, er-α and er-β while prolongation of treatment (7 or 11 injections) resulted in a marked decrease in expression of these genes concomitant to formation of vitellogenic follicle. However, a marked increase in plasma E2 was recorded after 7 injections of FSH. The direct role of gonadotropin in regulation of cyp19 and estrogen receptors was established by an in vitro study where FSH upregulated the expression of these genes in all stages of ovarian follicles (early growing, previtellogenic and early vitellogenic) of wall lizards.
Collapse
Affiliation(s)
- Mamta Tripathy
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
17
|
Molecular cloning of ESR2 and gene expression analysis of ESR1 and ESR2 in the pituitary gland of the Chinese alligator ( Alligator sinensis ) during female reproductive cycle. Gene 2017; 623:15-23. [DOI: 10.1016/j.gene.2017.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/04/2017] [Accepted: 04/12/2017] [Indexed: 02/02/2023]
|