1
|
Sellamuthu G, Naseer A, Hradecký J, Chakraborty A, Synek J, Modlinger R, Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104061. [PMID: 38151136 DOI: 10.1016/j.ibmb.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Aisha Naseer
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jaromír Hradecký
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amrita Chakraborty
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jiří Synek
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Roman Modlinger
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amit Roy
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic.
| |
Collapse
|
2
|
Shangguan C, Kuang Y, Gao L, Zhu B, Chen XD, Yu X. Antennae-enriched expression of candidate odorant degrading enzyme genes in the turnip aphid, Lipaphis erysimi. Front Physiol 2023; 14:1228570. [PMID: 37476684 PMCID: PMC10354451 DOI: 10.3389/fphys.2023.1228570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
Aphids heavily rely on their olfactory system for foraging behavior. Odorant-degrading enzymes (ODEs) are essential in preserving the olfactory acuity of aphids by removing redundant odorants in the antennae. Certain enzymes within this group stand out as being enriched and/or biased expressed in the antennae, such as carboxylesterases (CXEs), cytochrome P450 (CYPs), glutathione S-transferases (GSTs), and UDP-glycosyltransferases (UGTs). Here, we performed a comparative transcriptome analysis of antennae and body tissue to isolate the antennal ODE genes of turnip aphid Lipaphis erysimi. A dataset of one CXE, seven CYPs, two GSTs, and five UGTs enriched in the antennae was identified and subjected to sequence analysis. Furthermore, qRT-PCR analyses showed that 13 ODE genes (LeCXE6, LeCYP4c1, LeCYP6a2, LeCYP6a13, LeCYP6a14.2, LeCYP6k1, LeCYP18a1, LeGST1, LeUGT1-7, LeUGT2B7, LeUGT2B13, LeUGT2C1.1, and LeUGT2C1.2) were specifically or significantly elevated in antennal tissues. Among these antennae-enriched ODEs, LeCYP4c1, LeCYP6a2, LeCYP6a13, LeCYP6a14.2, LeCYP18a1, LeUGT2B7, and LeUGT2B13 were found to exhibit significantly higher expression levels in alate aphids compared to apterous and nymph aphids, suggesting their putative role in detecting new host plant location. The results presented in this study highlight the identification and expression of ODE genes in L. erysimi, paving the path to investigate their functional role in odorant degradation during the olfactory processes.
Collapse
Affiliation(s)
- Chaozhi Shangguan
- Ganzhou Key Laboratory of Nanling Insect Biology/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yinhui Kuang
- Ganzhou Key Laboratory of Nanling Insect Biology/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Liwei Gao
- Ganzhou Key Laboratory of Nanling Insect Biology/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Bo Zhu
- Ganzhou Key Laboratory of Nanling Insect Biology/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Xue Dong Chen
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
| | - Xiudao Yu
- Ganzhou Key Laboratory of Nanling Insect Biology/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Kuang Y, Xiong Y, Chen XD, Yu X. Antennae-abundant expression of candidate cytochrome P450 genes associated with odorant degradation in the asian citrus psyllid, Diaphorina citri. Front Physiol 2022; 13:1004192. [PMID: 36176776 PMCID: PMC9513247 DOI: 10.3389/fphys.2022.1004192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
The Asian citrus psyllid, Diaphorina citri, is a notorious pest that is an efficient vector for Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus huanglongbing (HLB). The olfactory system of insects is crucial for foraging and mating behavior. Antennae-abundant odorant degrading enzymes (ODEs), including cytochrome P450 (CYPs), are important in degrading redundant odorant molecules to recover the insect olfactory. In this study, to isolate the antennal CYP genes of D. citri, we generated four transcriptomes from female/male antennae and body through deep sequencing of RNA libraries. Seven DcCYP genes preferentially expressed in antennae were first identified by comparing the antennal and body transcriptomes. Phylogenetic analysis grouped four DcCYPs (DcCYP6a13, DcCYP6j1, DcCYP6k1, and DcCYP6a2) into the CYP3 class, whereas DcCYP4d2, DcCYP4c62, and DcCYP4d8 were clustered in the CYP4 clade. qRT-PCR analyses across developmental stages and tissues showed they were antennae-abundant in both genders and constantly expressed from the first instar nymph to the adult. The results presented here highlight the isolation and expression of CYP genes in D. citri antennae, providing valuable insights into their putative role in odorant degradation.
Collapse
Affiliation(s)
- Yinhui Kuang
- Ganzhou Key Laboratory of Nanling Insect Biology/Ganzhou Key Laboratory of Greenhouse Vegetables/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yu Xiong
- Ganzhou Key Laboratory of Nanling Insect Biology/Ganzhou Key Laboratory of Greenhouse Vegetables/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Xue Dong Chen
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
| | - Xiudao Yu
- Ganzhou Key Laboratory of Nanling Insect Biology/Ganzhou Key Laboratory of Greenhouse Vegetables/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Sun Y, Dai L, Kang X, Fu D, Gao H, Chen H. Isolation and expression of five genes in the mevalonate pathway of the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21760. [PMID: 33231898 DOI: 10.1002/arch.21760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
The Chinese white pine beetle Dendroctonus armandi (Tsai and Li) is a significant pest of the Qinling and Bashan Mountains pine forests of China. The Chinese white pine beetle can overcome the defences of Chinese white pine Pinus armandi (Franch) through pheromone-assisted aggregation that results in a mass attack of host trees. We isolated five full-length complementary DNAs encoding mevalonate pathway-related enzyme genes from the Chinese white pine beetle (D. armandi), which are acetoacetyl-CoA thiolase (AACT), geranylgeranyl diphosphate synthase (GGPPS), mevalonate kinase (MK), mevalonate diphosphate decarboxylase (MPDC), and phosphomevalonate kinase (PMK). Bioinformatic analyses were performed on the full-length deduced amino acid sequences. Differential expression of these five genes was observed between sexes, and within these significant differences among topically applied juvenile hormone III (JH III), fed on phloem of P. armandi, tissue distribution, and development stage. Mevalonate pathway genes expression were induced by JH III and feeding.
Collapse
Affiliation(s)
- Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaotong Kang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Vandenhole M, Dermauw W, Van Leeuwen T. Short term transcriptional responses of P450s to phytochemicals in insects and mites. CURRENT OPINION IN INSECT SCIENCE 2021; 43:117-127. [PMID: 33373700 PMCID: PMC8082277 DOI: 10.1016/j.cois.2020.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) play a key role in the detoxification of phytochemicals in arthropod herbivores. We present here an overview of recent progress in understanding the breadth and specificity of gene expression plasticity of P450s in response to phytochemicals. We discuss experimental setups and new findings in mechanisms of P450 regulation. Whole genome transcriptomic analysis of arthropod herbivores, either after direct administration of phytochemicals or after host plant shifts, allowed to integrate various levels of chemical complexity and lead to the unbiased identification of responsive P450 genes. However, despite progress in identification of inducible P450s, the link between induction and metabolism is still largely unexplored, and to what extent the overall response is biologically functional should be further investigated. In the near future, such studies will be more straightforward as forward and reverse genetic tools become more readily available.
Collapse
Affiliation(s)
- Marilou Vandenhole
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Iinks 653, 9000 Ghent, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Iinks 653, 9000 Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Iinks 653, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Blomquist GJ, Tittiger C, MacLean M, Keeling CI. Cytochromes P450: terpene detoxification and pheromone production in bark beetles. CURRENT OPINION IN INSECT SCIENCE 2021; 43:97-102. [PMID: 33359166 DOI: 10.1016/j.cois.2020.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Bark beetles (family: Curculionidae; subfamily: Scolytinae) in the Dendroctonus and Ips genera are the most destructive forest pests in the Northern hemisphere. They use cytochromes P450 (P450s) to detoxify tree-produced terpenes to produce pheromones, in de novo pheromone production and to oxidize odorants on antennae. Many Dendroctonus spp. use trans-verbenol as an aggregation pheromone, and it is formed from host-tree produced α-pinene hydroxylated by CYP6DE1 during larval stages, stored as verbenyl ester of fatty acids, and then released when the female begins feeding on a new host tree. Ips spp. hydroxylate de novo produced myrcene to form ipsdienol. Subsequent steps form the appropriate enantiomeric composition of ipsdienol and convert ipsdienol to ipsenol. In this article we review recent progress in elucidating the functions of P450s in Ips and Dendroctonus species and in doing so provide insights into the role of these enzymes in host phytochemical detoxification and pheromone production.
Collapse
Affiliation(s)
- Gary J Blomquist
- Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States.
| | - Claus Tittiger
- Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Marina MacLean
- Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Christopher I Keeling
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Québec, QC, Canada; Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC, Canada
| |
Collapse
|
7
|
Sarabia LE, López MF, Obregón-Molina G, Cano-Ramírez C, Sánchez-Martínez G, Zúñiga G. The Differential Expression of Mevalonate Pathway Genes in the Gut of the Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) Is Unrelated to the de Novo Synthesis of Terpenoid Pheromones. Int J Mol Sci 2019; 20:E4011. [PMID: 31426479 PMCID: PMC6721070 DOI: 10.3390/ijms20164011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Bark beetles commonly produce de novo terpenoid pheromones using precursors synthesized through the mevalonate pathway. This process is regulated by Juvenile Hormone III (JH III). In this work, the expression levels of mevalonate pathway genes were quantified after phloem feeding-to induce the endogenous synthesis of JH III-and after the topical application of a JH III solution. The mevalonate pathway genes from D. rhizophagus were cloned, molecularly characterized, and their expression levels were quantified. Also, the terpenoid compounds produced in the gut were identified and quantified by Gas Chromatography Mass Spectrometry (GC-MS). The feeding treatment produced an evident upregulation, mainly in acetoacetyl-CoA thiolase (AACT), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), phosphomevalonate kinase (PMK), and isopentenyl diphosphate isomerase (IPPI) genes, and males reached higher expression levels compared to females. In contrast, the JH III treatment did not present a clear pattern of upregulation in any sex or time. Notably, the genes responsible for the synthesis of frontalin and ipsdienol precursors (geranyl diphosphate synthase/farnesyl diphosphate synthase (GPPS/FPPS) and geranylgeranyl diphosphate synthase (GGPPS)) were not clearly upregulated, nor were these compounds further identified. Furthermore, trans-verbenol and myrtenol were the most abundant compounds in the gut, which are derived from an α-pinene transformation rather than de novo synthesis. Hence, the expression of mevalonate pathway genes in D. rhizophagus gut is not directed to the production of terpenoid pheromones, regardless of their frequent occurrence in the genus Dendroctonus.
Collapse
Affiliation(s)
- Laura Elisa Sarabia
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela, Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City CP 11340, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela, Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City CP 11340, Mexico
| | - Gabriel Obregón-Molina
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela, Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City CP 11340, Mexico
| | - Claudia Cano-Ramírez
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela, Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City CP 11340, Mexico
| | - Guillermo Sánchez-Martínez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Pabellón, Km. 32.5 Carr. Ags.-Zac., Pabellón de Arteaga, Ags. CP 20660, Mexico
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela, Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City CP 11340, Mexico.
| |
Collapse
|
8
|
Jiang M, Lü SM, Qi ZY, Zhang YL. Characterized cantharidin distribution and related gene expression patterns in tissues of blister beetles, Epicauta chinensis. INSECT SCIENCE 2019; 26:240-250. [PMID: 28745022 DOI: 10.1111/1744-7917.12512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Cantharidin (CTD), a terpenoid defensive toxin mainly produced by blister beetles, is widely known by its toxicity to both cancer cells and pests. However, little information is known about its biosynthesis in blister beetles. In this study, first we determined the CTD content in various tissues of adult blister beetles on different days after mating, and then detected the temporal and spatial expression patterns of genes related to CTD biosynthesis in Epicauta chinensis. Results revealed that the accessory gland is the source of the highest CTD production. The second highest level was in the fat body in male blister beetles after mating. In females, the highest CTD content was in the reproductive system except the ovary after mating. As revealed by messenger RNA expression level analysis, the highest levels of 3-hydroxy-3-methylglutary-CoA reductase (HMGR) and juvenile hormone epoxide hydrolase (JHEH) transcripts of E. chinensis were observed in the fat body in males after mating. However, the highest transcript level of EcHMGR was in the ovary and EcJHEH was maintained at a nearly similar level in females. The transcript level of methyl-farnesoate epoxide was significantly higher in the head and that of CYP4BM1 in the midgut in both male and female E. chinensis. We speculate that the fat body may play a more important role than other tissues on the CTD biosynthesis in male E. chinensis after mating. There may be multiple tissues involved in the process of CTD biosynthesis. These four genes probably play regulatory roles in different tissues in males.
Collapse
Affiliation(s)
- Ming Jiang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Shu-Min Lü
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| | - Zi-Yi Qi
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| | - Ya-Lin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Maldonado A, Nowicki J, Pratchett MS, Schlenk D. Differences in diet and biotransformation enzymes of coral reef butterflyfishes between Australia and Hawaii. Comp Biochem Physiol C Toxicol Pharmacol 2019; 216:1-9. [PMID: 30368017 DOI: 10.1016/j.cbpc.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/21/2018] [Indexed: 11/29/2022]
Abstract
Many reef fishes are capable of feeding on chemically-defended benthic prey, such as soft (alcyonarian) corals; however, little is known about the molecular mechanisms that underpin allelochemical biotransformation and detoxification. Butterflyfishes (Chaetodon: Chaetdontidae) are a useful group for comparatively exploring links between biotransformation enzymes and diet, because they commonly feed on chemically defended prey. Moreover, diets of some species vary among geographic locations. This study compares gene expression, protein and enzymatic activity of key detoxification enzymes (cytochrome P450 (CYP) 2, 3, epoxide hydrolase, glutathione transferase and UDP-glucuronosyltransferase) in livers of four coral-feeding butterflyfish species between Australia and Hawaii, where these fishes differ in diet composition. For C. kleinii, C. auriga, and C. unimaculatus, we found higher CYP2 and CYP3 levels were linked to more allelochemically rich diets in Australia relative to Hawaii. For C. lunulatus from Hawaii CYP2 and CYP3 levels were 1 to 20-fold higher than C. lunulatus from Australia, possibly due to their predominant prey in Hawaii (Porities spp.) being richer in allelochemicals. UGT, GST and epoxide hydrolase varied between species and location and did not correspond to any specific dietary preference or location. Higher levels of CYP2 and CYP3A isozymes in species that feed on allelochemically-rich prey suggest that these biotransformation enzymes may be involved in detoxification of coral dietary allelochemicals in butterflyfishes.
Collapse
Affiliation(s)
- Aileen Maldonado
- Department of Environmental Science, University of California, Riverside, CA, 2258 Geology, 900 University Ave., Riverside, CA 92521, USA.
| | - Jessica Nowicki
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Morgan S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.
| | - Daniel Schlenk
- Department of Environmental Science, University of California, Riverside, CA, 2258 Geology, 900 University Ave., Riverside, CA 92521, USA.
| |
Collapse
|
10
|
Muñiz-González AB, Martínez-Guitarte JL. Effects of single exposure and binary mixtures of ultraviolet filters octocrylene and 2-ethylhexyl 4-(dimethylamino) benzoate on gene expression in the freshwater insect Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35501-35514. [PMID: 30350147 DOI: 10.1007/s11356-018-3516-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Ultraviolet filters are used extensively in the production of many personal care and industrial products. These products can inadvertently pollute the environment through recreational activities. They have been associated with endocrine disruption in vertebrates but their effects in invertebrates are poorly understood. Chironomus riparius is a species of the dipteran order, with aquatic larvae that are frequently used in toxicity tests. Previously, we showed that octocrylene (OC) and 2-ethylhexyl 4-(dimethylamino) benzoate (OD-PABA) differentially affected the mRNA levels of the ecdysone receptor and Hsp70 genes. For a better understanding of their mode of action, transcriptional activity by real-time PCR was analyzed in fourth instar larvae exposed to OC, OD-PABA, or a binary mixture of both. We studied 16 genes related to the endocrine system, stress, the immune system, and biotransformation mechanisms to elucidate the putative interactions between these compounds. No response was observed for the genes involved in biotransformation, suggesting that enzymes other than cytochromes P450 and glutathione-S-transferases (GSTs) could get involved in transformation of these compounds. Similarly, no response was observed for endocrine-related genes while the stress gene HYOU1 was inhibited by OD-PABA, suggesting an effect in response to hypoxia. In addition, no significant interactions were observed following exposure to a binary mixture of these compounds. Overall, the results suggest a weak, acute response in different metabolic pathways and a lack of interaction between the compounds. Finally, new genes are identified in this organism, opening the possibility to analyze new cellular pathways as targets of toxicants.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain.
- Facultad de Ciencias, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Martínez-Guitarte JL. Transcriptional activity of detoxification genes is altered by ultraviolet filters in Chironomus riparius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:64-71. [PMID: 29154136 DOI: 10.1016/j.ecoenv.2017.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Ultraviolet (UV) filters are compounds used to prevent the damage produced by UV radiation in personal care products, plastics, etc. They have been associated with endocrine disruption, showing anti-estrogen activity in vertebrates and altering the ecdysone pathway in invertebrates. Although they have attracted the attention of multiple research teams there is a lack of data about how animals activate detoxification systems, especially in invertebrates. Here, analysis of the effects of two UV filters, benzophenone-3 (BP3) and 4-methylbenzylidene camphor (4MBC), on the transcriptional activity of nine genes covering the three steps of the detoxification process has been performed. Four cytochrome P450 genes belonging to different members of this family, five GST genes, and the multidrug resistance protein 1 (MRP1) gene were studied by RT-PCR to analyze their transcriptional activity in fourth instar larvae exposed to the UV filters for 8 and 24h. The obtained results show a differential response with downregulation of the different Cyp450s tested by 4MBC while BP3 seems not to modify their expression. On the other hand, some of the GST genes were affected by one or other of the filters, showing a less homogenous response. Finally, MRP1 was activated by both filters but at different times. These results demonstrate for first time that UV filters alter the expression of genes involved in the different steps of the detoxification process and that they can be processed by phase I enzymes other than Cyp450s. They also suggest that UV filters affect biotransformation processes, compromising the ability of the individual to respond to chemical stress, so further research is needed to know the extent of the damage that they can produce in the resistance of the cell to chemicals.
Collapse
Affiliation(s)
- José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
12
|
Müller C, Vogel H, Heckel DG. Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Mol Ecol 2017; 26:6370-6383. [DOI: 10.1111/mec.14349] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/31/2017] [Accepted: 09/05/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Caroline Müller
- Department of Chemical Ecology; Bielefeld University; Bielefeld Germany
| | - Heiko Vogel
- Department of Entomology; Max Planck Institute for Chemical Ecology; Jena Germany
| | - David G. Heckel
- Department of Entomology; Max Planck Institute for Chemical Ecology; Jena Germany
| |
Collapse
|