1
|
Gouda MNR, Naga KC, Nebapure SM, Subramanian S. Unravelling the genomic landscape reveals the presence of six novel odorant-binding proteins in whitefly Bemisia tabaci Asia II-1. Int J Biol Macromol 2024; 279:135140. [PMID: 39216571 DOI: 10.1016/j.ijbiomac.2024.135140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Genome wide analysis identified 14 OBPs in B. tabaci Asia II-1, of which six are new to science. Phylogenetic analysis traced their diversity and evolutionary lineage among Hemipteran insects. Comparative analysis reclassified the OBP gene families among B. tabaci cryptic species: Asia I, II-1, MEAM1, and MED. The 14 OBPs were clustered on four chromosomes of B. tabaci. RT-qPCR showed high expression of OBP3 and 8 across all body tissues and OBP10 in the abdomen. Molecular docking showed that OBP 3 and 10 had high affinity bonding with different candidate ligands, with binding energies ranging from -5.0 to -7.7 kcal/mol. Competitive fluorescence binding assays revealed that β-caryophyllene and limonene had high binding affinities for OBP3 and 10, with their IC50 values ranging from 9.16 to 14 μmol·L-1 and KD values around 7 to 9 μmol·L-1. Behavioural assays revealed that β-caryophyllene and carvacrol were attractants, β-ocimene and limonene were repellents, and γ-terpinene and β-ocimene were oviposition deterrents to B. tabaci. Functional validation by RNAi demonstrated that OBP3 and OBP10 modulated host recognition of B. tabaci. This study expands our understanding of the genomic landscape of OBPs in B. tabaci, offering scope for developing novel pest control strategies.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Kailash Chandra Naga
- Division of Plant Protection, Central Potato Research Institute, Shimla, Himachal Pradesh 171001, India.
| | - S M Nebapure
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - S Subramanian
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
2
|
Sankarganesh D, Balasundaram A, Doss C GP, Azhwar R, Achiraman S, Archunan G. Mechanistic Insights into the Binding of Boar Salivary Pheromones and Putative Molecule with Receptor Proteins: A Comparative Computational Approach. ACS OMEGA 2024; 9:4986-5001. [PMID: 38313522 PMCID: PMC10831833 DOI: 10.1021/acsomega.3c09211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024]
Abstract
Precise estrus detection in sows is pivotal in increasing the productivity within the pork industry. Sows in estrus exhibit exclusive behaviors when exposed to either a live boar or the steroid pheromones androstenone and androstenol. Recently, a study employing solid-phase microextraction-gas chromatography-mass spectrometry has identified a novel salivary molecule in boars, known as quinoline. This finding has intriguing implications as a synthetic mixture of androstenone, androstenol, and quinoline induces estrus behaviors in sows. Nevertheless, the precise pheromonal characteristics of quinoline remain elusive. In this study, we validate and compare the binding efficiency of androstenone, androstenol, and quinoline with porcine olfactory receptor proteins (odorant-binding protein [OBP], pheromaxein, salivary lipocalin [SAL], and Von Ebner's gland protein [VEGP]) using molecular docking and molecular dynamics simulations. All protein-ligand complexes demonstrated stability, as evidenced by the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen-bond (H-bond) plots. Furthermore, quinoline displayed higher binding efficiency with OBP, measured at -85.456 ± 8.268 kJ/mol, compared to androstenone and androstenol, as determined by molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) calculations. Conversely, quinoline exhibited a lower binding efficacy when interacting with SAL, pheromaxein, and VEGP compared to androstenone and androstenol. These findings, in part, suggest the binding possibility of quinoline with carrier proteins and warrant further investigation to support the role of quinoline in porcine chemical communication.
Collapse
Affiliation(s)
- Devaraj Sankarganesh
- School
of Bio Sciences and Technology, Vellore
Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Ambritha Balasundaram
- School
of Bio Sciences and Technology, Vellore
Institute of Technology, Vellore 632014, Tamilnadu, India
| | - George Priya Doss C
- School
of Bio Sciences and Technology, Vellore
Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Raghunath Azhwar
- Department
of Pediatrics, University of Michigan School
of Medicine, Ann Arbor, Michigan 48109, United States
| | - Shanmugam Achiraman
- Department
of Environmental Biotechnology, Bharathidasan
University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Govindaraju Archunan
- School
of Life Sciences, Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
| |
Collapse
|
3
|
Zhu J, Wang F, Zhang Y, Yang Y, Hua D. Odorant-binding Protein 10 From Bradysia odoriphaga (Diptera: Sciaridae) Binds Volatile Host Plant Compounds. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7. [PMID: 36729094 PMCID: PMC9894006 DOI: 10.1093/jisesa/iead004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 06/18/2023]
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a major insect pest of seven plant families including 30 commercial crops in Asia. The long-term use of chemical pesticides leads to problems such as insect resistance, environmental issues, and food contamination. Against this background, a novel pest control method should be developed. In insects, odorant-binding proteins (OBPs) transport odor molecules, including pheromones and plant volatiles, to olfactory receptors. Here, we expressed and characterized the recombinant B. odoriphaga OBP BodoOBP10, observing that it could bind the sulfur-containing compounds diallyl disulfide and methyl allyl disulfide with Ki values of 8.01 μM and 7.00 μM, respectively. Homology modeling showed that the BodoOBP10 3D structure was similar to that of a typical OBP. Both diallyl disulfide and methyl allyl disulfide bound to the same site on BodoOBP10, mediated by interactions with six hydrophobic residues Met70, Ile75, Thr89, Met90, Leu93, and Leu94, and one aromatic residue, Phe143. Furthermore, silencing BodoOBP10 expression via RNAi significantly reduced the electroantennogram (EAG) response to diallyl disulfide and methyl allyl disulfide. These findings suggest that BodoOBP10 should be involved in the recognition and localization of host plants.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China
| | - Fu Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | |
Collapse
|
4
|
Wu ZR, Fan JT, Tong N, Guo JM, Li Y, Lu M, Liu XL. Transcriptome analysis and identification of chemosensory genes in the larvae of Plagiodera versicolora. BMC Genomics 2022; 23:845. [PMID: 36544089 PMCID: PMC9773597 DOI: 10.1186/s12864-022-09079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In insects, the chemosensory system is crucial in guiding their behaviors for survival. Plagiodera versicolora (Coleoptera: Chrysomelidae), is a worldwide leaf-eating forest pest in salicaceous trees. There is little known about the chemosensory genes in P. versicolora. Here, we conducted a transcriptome analysis of larvae heads in P. versicolora. RESULTS In this study, 29 odorant binding proteins (OBPs), 6 chemosensory proteins (CSPs), 14 odorant receptors (ORs), 13 gustatory receptors (GRs), 8 ionotropic receptors (IRs) and 4 sensory neuron membrane proteins (SNMPs) were identified by transcriptome analysis. Compared to the previous antennae and foreleg transcriptome data in adults, 12 OBPs, 2 CSPs, 5 ORs, 4 IRs, and 7 GRs were newly identified in the larvae. Phylogenetic analyses were conducted and found a new candidate CO2 receptor (PverGR18) and a new sugar receptor (PverGR23) in the tree of GRs. Subsequently, the dynamic expression profiles of various genes were analyzed by quantitative real-time PCR. The results showed that PverOBP31, OBP34, OBP35, OBP38, and OBP40 were highly expressed in larvae, PverOBP33 and OBP37 were highly expressed in pupae, and PverCSP13 was highly expressed in eggs, respectively. CONCLUSIONS We identified a total of 74 putative chemosensory genes based on a transcriptome analysis of larvae heads in P. versicolora. This work provides new information for functional studies on the chemoreception mechanism in P. versicolora.
Collapse
Affiliation(s)
- Zhe-Ran Wu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jian-Ting Fan
- grid.443483.c0000 0000 9152 7385School of Forestry and Biotechnology, Zhejiang A & F University, National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Lin’an, 311300 China
| | - Na Tong
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jin-Meng Guo
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/ Department of Entomology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yang Li
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Min Lu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xiao-Long Liu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
5
|
Wu F, Liu S, Zhang X, Hu H, Wei Q, Han B, Li H. Differences in ASP1 expression and binding dynamics to queen mandibular pheromone HOB between Apis mellifera and Apis cerana workers reveal olfactory adaptation to colony organization. Int J Biol Macromol 2022; 217:583-591. [PMID: 35850267 DOI: 10.1016/j.ijbiomac.2022.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
The eastern Apis cerana (Ac) and the western Apis mellifera (Am) are two closely related and most economically valuable honeybee species managed extensively worldwide. However, how worker bees of Ac and Am are adapted to their colony organization remains to be uncovered. Here, we found that the expression level of gene encoding antennae-specific proteins 1 (ASP1, a key regulator in recognizing queen mandibular pheromone) was positively correlated with the colony sizes in both bee species, and the expression level in Am was higher than that in Ac, suggesting that ASP1 may play an important role in maintaining colony homeostasis. Using competitive binding assay, molecular docking, and site-directed mutagenesis, we then confirmed the good binding affinities of both Ac-ASP1 and Am-ASP1 to methyl p-hydroxy benzoate (HOB), and Val115 was the key amino acid. However, the affinity of Am-ASP1 was stronger than that of Ac-ASP1. EAG analysis further demonstrated that antennae of Am worker bees had faster depolarization and repolarization in response to HOB stimulation. Taken together, these findings indicate that the differences in expression levels and binding dynamics allow ASP1 recognizing HOB to potentially serve as a specific regulator of colony organization in Ac and Am.
Collapse
Affiliation(s)
- Fan Wu
- Zhejiang Provincial Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, PR China; Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, PR China
| | - Shenyun Liu
- Zhejiang Provincial Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, PR China
| | - Xufeng Zhang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, PR China; Institute of Horticultural Research, Shanxi Academy of Agricultural Science, Shanxi Agricultural University, Taiyuan 030031, PR China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, PR China
| | - Qiaohong Wei
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, PR China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, PR China.
| | - Hongliang Li
- Zhejiang Provincial Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, PR China.
| |
Collapse
|
6
|
Chen WB, Du LX, Gao XY, Sun LL, Chen LL, Xie GY, An SH, Zhao XC. Identification of Odorant-Binding and Chemosensory Protein Genes in Mythimna separata Adult Brains Using Transcriptome Analyses. Front Physiol 2022; 13:839559. [PMID: 35295575 PMCID: PMC8918689 DOI: 10.3389/fphys.2022.839559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Large numbers of chemosensory genes have been identified in the peripheral sensory organs of the pest Mythimna separata (Walker) to increase our understanding of chemoreception-related molecular mechanisms and to identify molecular targets for pest control. Chemosensory-related genes are expressed in various tissues, including non-sensory organs, and they play diverse roles. To better understand the functions of chemosensory-related genes in non-sensory organs, transcriptomic analyses of M. separata brains were performed. In total, 29 odorant-binding proteins (OBPs) and 16 chemosensory proteins (CSPs) putative genes were identified in the transcriptomic data set. The further examination of sex- and tissue-specific expression using RT-PCR suggested that eight OBPs (OBP5, -7, -11, -13, -16, -18, -21, and -24) and eight CSPs (CSP2–4, -8, CSP10–12, and -15) genes were expressed in the brain. Furthermore, bands representing most OBPs and CSPs could be detected in antennae, except for a few that underwent sex-biased expression in abdomens, legs, or wings. An RT-qPCR analysis of the expression profiles of six OBPs (OBP3–5, -9, -10, and -16) and two CSPs (CSP3 and CSP4) in different tissues and sexes indicated that OBP16 was highly expressed in male brain, and CSP3 and CSP4 were female-biased and highly expressed in brain. The expression levels of OBP5 and OBP10 in brain were not significantly different between the sexes. The findings expand our current understanding of the expression patterns of OBPs and CSPs in M. separata sensory and non-sensory tissues. These results provide valuable reference data for exploring novel functions of OBPs and CSPs in M. separata and may help in developing effective biological control strategies for managing this pest by exploring novel molecular targets.
Collapse
Affiliation(s)
- Wen-Bo Chen
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Li-Xiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Yan Gao
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Long-Long Sun
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lin-Lin Chen
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gui-Ying Xie
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shi-Heng An
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xin-Cheng Zhao
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Xin-Cheng Zhao,
| |
Collapse
|
7
|
Gao YQ, Chen ZZ, Liu MY, Song CY, Jia ZF, Liu FH, Qu C, Dewer Y, Zhao HP, Xu YY, Kang ZW. Characterization of Antennal Chemosensilla and Associated Chemosensory Genes in the Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintanca). Front Physiol 2022; 13:847895. [PMID: 35295577 PMCID: PMC8920487 DOI: 10.3389/fphys.2022.847895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
The insect chemosensory system plays an important role in many aspects of insects' behaviors necessary for their survival. Despite the complexity of this system, an increasing number of studies have begun to understand its structure and function in different insect species. Nonetheless, the chemosensory system in the orange spiny whitefly Aleurocanthus spiniferus, as one of the most destructive insect pests of citrus in tropical Asia, has not been investigated yet. In this study, the sensillum types, morphologies and distributions of the male and female antennae of A. spiniferus were characterized using scanning electron microscopy. In both sexes, six different sensilla types were observed: trichodea sensilla, chaetica sensilla, microtrichia sensilla, coeloconic sensilla, basiconic sensilla, and finger-like sensilla. Moreover, we identified a total of 48 chemosensory genes, including 5 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 3 sensory neuron membrane proteins (SNMPs), 6 odorant receptors (ORs), 8 gustatory receptors (GRs), and 14 ionotropic receptors (IRs) using transcriptome data analysis. Tissue-specific transcriptome analysis of these genes showed predominantly expression in the head (including antennae), whereas CSPs were broadly expressed in both head (including the antennae) and body tissue of adult A. spiniferus. In addition, the expression profiling of selected chemosensory genes at different developmental stages was examined by quantitative real time-PCR which was mapped to the transcriptome. We found that the majority of these genes were highly expressed in adults, while AspiORco, AspiGR1, AspiGR2, and AspiIR4 genes were only detected in the pupal stage. Together, this study provides a basis for future chemosensory and genomic studies in A. spiniferus and closely related species. Furthermore, this study not only provides insights for further research on the molecular mechanisms of A. spiniferus-plant interactions but also provides extensive potential targets for pest control.
Collapse
Affiliation(s)
- Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Meng-Yuan Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Chang-Yuan Song
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhi-Fei Jia
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Fang-Hua Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Cheng Qu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Hai-Peng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhi-Wei Kang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
8
|
Zhang H, Wang JY, Wan NF, Chen YJ, Ji XY, Jiang JX. Identification and expression profile of odorant-binding proteins in the parasitic wasp Microplitis pallidipes using PacBio long-read sequencing. Parasite 2022; 29:53. [PMID: 36350195 PMCID: PMC9645227 DOI: 10.1051/parasite/2022053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Microplitis pallidipes Szépligeti (Hymenoptera: Braconidae) is an important parasitic wasp of second and third-instar noctuid larvae such as the insect pests Spodoptera exigua, Spodoptera litura, and Spodoptera frugiperda. As in other insects, M. pallidipes has a chemosensory recognition system that is critical to foraging, mating, oviposition, and other behaviors. Odorant-binding proteins (OBPs) are important to the system, but those of M. pallidipes have not been determined. This study used PacBio long-read sequencing to identify 170,980 M. pallidipes unigenes and predicted 129,381 proteins. Following retrieval of possible OBP sequences, we removed those that were redundant or non-full-length and eventually cloned five OBP sequences: MpOBP2, MpOBP3, MpOBP8, MpOBP10, and MpPBP 429, 429, 459, 420, and 429 bp in size, respectively. Each M. pallidipes OBP had six conserved cysteine residues. Phylogenetic analysis revealed that the five OBPs were located at different branches of the phylogenetic tree. Additionally, tissue expression profiles indicated that MpOBP2 and MpPBP were mainly expressed in the antennae of male wasps, while MpOBP3, MpOBP8, and MpOBP10 were mainly expressed in the antennae of female wasps. MpOBP3 was also highly expressed in the legs of female wasps. Temporal profiles revealed that the expression of each M. pallidipes OBP peaked at different days after emergence to adulthood. In conclusion, we identified five novel odorant-binding proteins of M. pallidipes and demonstrated biologically relevant differences in expression patterns.
Collapse
Affiliation(s)
- Hao Zhang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-Carbon Agriculture Shanghai 201403 China
| | - Jin-Yan Wang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-Carbon Agriculture Shanghai 201403 China
| | - Nian-Feng Wan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Yi-Juan Chen
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-Carbon Agriculture Shanghai 201403 China
| | - Xiang-Yun Ji
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-Carbon Agriculture Shanghai 201403 China
- Corresponding authors: ;
| | - Jie-Xian Jiang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-Carbon Agriculture Shanghai 201403 China
- Corresponding authors: ;
| |
Collapse
|
9
|
Dong Y, Li T, Liu J, Sun M, Chen X, Liu Y, Xu P. Sex- and stage-dependent expression patterns of odorant-binding and chemosensory protein genes in Spodoptera exempta. PeerJ 2021; 9:e12132. [PMID: 34603852 PMCID: PMC8445084 DOI: 10.7717/peerj.12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
As potential molecular targets for developing novel pest management strategies, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) have been considered to initiate odor recognition in insects. Herein, we investigated the OBPs and CSPs in a major global crop pest (Spodoptera exempta). Using transcriptome analysis, we identified 40 OBPs and 33 CSPs in S. exempta, among which 35 OBPs and 29 CSPs had intact open reading frames. Sequence alignment indicated that 30 OBPs and 23 CSPs completely contained the conserved cysteines. OBPs of lepidopteran insects usually belonged to classical, minus-C, and plus-C groups. However, phylogenetic analyses indicated that we only identified 28 classical and seven minus-C OBPs in S. exempta, suggesting that we might have missed some typical OBPs in lepidopteran insects, probably due to their low expression levels. All of the CSPs from S. exempta clustered with the orthologs of other moths. The identification and expression of the OBPs and CSPs were well studied in insect adults by transcriptional analyses, and herein we used samples at different stages to determine the expression of OBPs and CSPs in S. exempta. Interestingly, our data indicated that several OBPs and CSPs were especially or more highly expressed in larvae or pupae than other stages, including three exclusively (SexeOBP13, SexeOBP16 and SexeCSP23) and six more highly (SexeOBP15, SexeOBP37, SexeCSP4, SexeCSP8, SexeCSP19, and SexeCSP33) expressed in larvae, two exclusively (SexeCSP6 and SexeCSP20) and three more highly (SexeOBP18, SexeCSP17, and SexeCSP26) expressed in pupae. Usually, OBPs and CSPs had both male- and female-biased expression patterns in adult antennae. However, our whole-body data indicated that all highly expressed OBPs and CSPs in adults were male-biased or did not differ, suggesting diverse OBP and CSP functions in insect adults. Besides identifying OBPs and CSPs as well as their expression patterns, these results provide a molecular basis to facilitate functional studies of OBPs and CSPs for exploring novel management strategies to control S. exempta.
Collapse
Affiliation(s)
- Yonghao Dong
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China.,Qingdao Special Crops Research Center, Chinese Academy of Agricultural Sciences, Qingdao, Shandong Province, China
| | - Tong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| | - Jin Liu
- Shandong Agriculture and Engineering University, Jinan, Shandong Province, China
| | - Meixue Sun
- Qingdao Special Crops Research Center, Chinese Academy of Agricultural Sciences, Qingdao, Shandong Province, China
| | - Xingyu Chen
- Qingdao Special Crops Research Center, Chinese Academy of Agricultural Sciences, Qingdao, Shandong Province, China
| | - Yongjie Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Pengjun Xu
- Qingdao Special Crops Research Center, Chinese Academy of Agricultural Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
10
|
Yuting Y, Dengke H, Caihua S, Wen X, Youjun Z. Molecular and Binding Characteristics of OBP5 of Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1509-1516. [PMID: 34050657 DOI: 10.1093/jee/toab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Odorant-binding proteins (OBPs) capture and transport semiochemicals to olfactory receptors (OR) and function in the first step in insect olfaction. In the present study, we cloned a full-length cDNA sequence of BodoOBP5 from the insect pest Bradysia odoriphaga (Diptera: Sciaridae). Real-time PCR (qRT-PCR) analysis revealed that BodoOBP5 was expressed at higher levels in female adults than in other developmental stages. In the different tissues, BodoOBP5 was highly expressed in the female antennae, whereas low levels were expressed in the head and the male antennae, expression was negligible in other tissues. The recombinant protein of BodoOBP5 was successfully expressed with a bacterial system. Competitive binding assays with nine host plant volatiles and a putative sex pheromone revealed that purified BodoOBP5 strongly bound to two sulfur compounds (methyl allyl disulfide and diallyl disulfide); the corresponding dissolution constants (Ki) were 10.38 and 9.23 μM, respectively. Molecular docking indicated that Leu99, Leu103, Ala143, Tyr107, Phe142, and Trp144 in the hydrophobic cavity of BodoOBP5 are the key residues mediating the interaction of BodoOBP5 with methyl allyl disulfide and diallyl disulfide. RNAi-based Y-tube olfactometer assay indicated that there is no significant difference in methyl allyl disulfide and diallyl disulfide. The results of this study increase our understanding of the binding of BodoOBP5 with plant volatiles, facilitating the development of novel ways to control B. odoriphaga.
Collapse
Affiliation(s)
- Yang Yuting
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Hua Dengke
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Shi Caihua
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Xie Wen
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhang Youjun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Tian W, Zhang T, Gu S, Guo Y, Gao X, Zhang Y. OBP14 (Odorant-Binding Protein) Sensing in Adelphocoris lineolatus Based on Peptide Nucleic Acid and Graphene Oxide. INSECTS 2021; 12:insects12050422. [PMID: 34066819 PMCID: PMC8151863 DOI: 10.3390/insects12050422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 02/04/2023]
Abstract
OBPs play a crucial role in the recognition of ligands and are involved in the initial steps of semiochemical perception. The diverse expression of OBP genes allows them to participate in different physiological functions in insects. In contrast to classic OBPs with typical olfactory roles in A. lineolatus, the physiological functions of Plus-C OBPs remain largely unknown. In addition, detection of the expression of insect OBP genes by conventional methods is difficult in vitro. Here, we focused on AlinOBP14, a Plus-C OBP from A. lineolatus, and we developed a PNA-GO-based mRNA biosensor to detect the expression of AlinOBP14. The results demonstrated that AlinOBP14 plays dual roles in A. lineolatus. The AlinOBP14 is expressed beneath the epidermis of the vertex and gena in heads of A. lineolatus, and it functions as a carrier for three terpenoids, while AlinOBP14 is also expressed in the peripheral antennal lobe and functions as a carrier for endogenous compounds such as precursors for juvenile hormone (JH) and JHⅢ. Our investigation provides a new method to detect the expression of OBP genes in insects, and the technique will facilitate the use of these genes as potential targets for novel insect behavioral regulation strategies against the pest.
Collapse
Affiliation(s)
- Wenhua Tian
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.T.); (S.G.); (X.G.)
| | - Tao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Y.G.)
| | - Shaohua Gu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.T.); (S.G.); (X.G.)
| | - Yuyuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Y.G.)
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.T.); (S.G.); (X.G.)
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Y.G.)
- Correspondence: ; Tel.: +86-10-6281-5929
| |
Collapse
|
12
|
Zhang F, Merchant A, Zhao Z, Zhang Y, Zhang J, Zhang Q, Wang Q, Zhou X, Li X. Characterization of MaltOBP1, a Minus-C Odorant-Binding Protein, From the Japanese Pine Sawyer Beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae). Front Physiol 2020; 11:212. [PMID: 32296339 PMCID: PMC7138900 DOI: 10.3389/fphys.2020.00212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Insect Odorant-Binding Proteins (OBPs) play crucial roles in the discrimination, binding and transportation of odorants. Herein, the full-length cDNA sequence of Minus-C OBP1 (MaltOBP1) from the Japanese pine sawyer beetle, Monochamus alternatus, was cloned by 3′ and 5′ RACE-PCR and analyzed. The results showed that MaltOBP1 contains a 435 bp open reading frame (ORF) that encodes 144 amino acids, including a 21-amino acid signal peptide at the N-terminus. The matured MaltOBP1 protein possesses a predicted molecular weight of about 14 kDa and consists of six α-helices, creating an open binding pocket, and two disulfide bridges. Immunoblotting results showed that MaltOBP1 was most highly expressed in antennae in both sexes, followed by wings and legs. Fluorescence assays demonstrated that MaltOBP1 protein exhibited high binding affinity with (R)-(+)-α-pinene, (−)-β-pinene, trans-caryophyllene, (R)-(+)-limonene and (–)-verbenone, which are the main volatile compounds of the pine tree. Our combined results suggest that MaltOBP1 plays a role in host seeking behavior in M. alternatus.
Collapse
Affiliation(s)
- Fangmei Zhang
- Henan Provincial South Henan Crop Pest Green Prevention and Control Academician Workstation, Xinyang Agriculture and Forestry University, Xinyang, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Zhibin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qinghua Wang
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
13
|
Wang R, Hu Y, Wei P, Qu C, Luo C. Molecular and Functional Characterization of One Odorant-Binding Protein Gene OBP3 in Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:299-305. [PMID: 31599328 DOI: 10.1093/jee/toz248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Odorant binding proteins (OBPs) of insects play a critical role in chemical perceptions and choice of insect host plant. Bemisia tabaci is a notorious insect pest which can damage more than 600 plant species. In order to explore functions of OBPs in B. tabaci, here we investigated binding characteristics and function of odorant-binding protein 3 in B. tabaci (BtabOBP3). The results indicated that BtabOBP3 shows highly similar sequence with OBPs of other insects, including the typical signature motif of six cysteines. The recombinant BtabOBP3 protein was obtained, and the evaluation of binding affinities to tested volatiles of host plant was conducted, then the results indicated that β-ionone had significantly higher binding to BtabOBP3 among other tested plant volatiles. Furthermore, silencing of BtabOBP3 significantly altered choice behavior of B. tabaci to β-ionone. In conclusion, it has been demonstrated that BtabOBP3 exerts function as one carrier of β-ionone and the results could be contributed to reveal the mechanisms of choosing host plant in B. tabaci.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Yuan Hu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Peiling Wei
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Cheng Qu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| | - Chen Luo
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing
| |
Collapse
|
14
|
Zhang Y, Shen C, Xia D, Wang J, Tang Q. Characterization of the Expression and Functions of Two Odorant-Binding Proteins of Sitophilus zeamais Motschulsky (Coleoptera: Curculionoidea). INSECTS 2019; 10:insects10110409. [PMID: 31731819 PMCID: PMC6920827 DOI: 10.3390/insects10110409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/24/2022]
Abstract
Odorant-binding proteins (OBPs) are important in insect chemical communication. The objective of this research was to identify the functions of two OBPs in Sitophilus zeamais. qRT-PCR and western blot (WB) were performed to investigate the expression profiles at the transcript and protein levels, respectively. Fluorescence competitive binding assays were used to measure the ability of the OBPs to bind to host volatiles, and a Y-tube olfactometer was used to verify the results (attraction/no response) via behavioral experiments. The RNAi was used to verify the function by knocking down the ability of proteins to bind odorants. qRT-PCR showed the highest expression SzeaOBP1 and SzeaOBP28 at the low-instar larva (LL) and eclosion adult (EA) stages, respectively. WB showed that both SzeaOBP1 and SzeaOBP28 were highly expressed in the EA stage. Fluorescence competitive binding assays indicated that SzeaOBP1 exhibited extremely high binding affinity with cetanol. SzeaOBP28 exhibited a pronounced binding affinity for 4-hydroxy-3-methoxybenzaldehyde. The behavioral experiment showed that the adult S. zeamais responded strongly to 4-hydroxy-3-methoxybenzaldehyde and valeraldehyde from Sorghum bicolor. The RNAi knockdown individuals displayed behavioral differences between normal insects and dsRNA (SzeaOBP1)-treated insects. We infer that they both have functions in perception and recognition of host volatiles, whereas SzeaOBP28 may also have other functions.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (Y.Z.); (C.S.); (D.X.)
| | - Chen Shen
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (Y.Z.); (C.S.); (D.X.)
| | - Daosong Xia
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (Y.Z.); (C.S.); (D.X.)
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742, USA;
| | - Qingfeng Tang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (Y.Z.); (C.S.); (D.X.)
- Correspondence: ; Tel.: +86-551-65786321
| |
Collapse
|