1
|
He L, Zhao C, Xiao Q, Zhao J, Liu H, Jiang J, Cao Q. Profiling the Physiological Roles in Fish Primary Cell Culture. BIOLOGY 2023; 12:1454. [PMID: 38132280 PMCID: PMC10741176 DOI: 10.3390/biology12121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Fish primary cell culture has emerged as a valuable tool for investigating the physiological roles and responses of various cell types found in fish species. This review aims to provide an overview of the advancements and applications of fish primary cell culture techniques, focusing on the profiling of physiological roles exhibited by fish cells in vitro. Fish primary cell culture involves the isolation and cultivation of cells directly derived from fish tissues, maintaining their functional characteristics and enabling researchers to study their behavior and responses under controlled conditions. Over the years, significant progress has been made in optimizing the culture conditions, establishing standardized protocols, and improving the characterization techniques for fish primary cell cultures. The review highlights the diverse cell types that have been successfully cultured from different fish species, including gonad cells, pituitary cells, muscle cells, hepatocytes, kidney and immune cells, adipocyte cells and myeloid cells, brain cells, primary fin cells, gill cells, and other cells. Each cell type exhibits distinct physiological functions, contributing to vital processes such as metabolism, tissue regeneration, immune response, and toxin metabolism. Furthermore, this paper explores the pivotal role of fish primary cell culture in elucidating the mechanisms underlying various physiological processes. Researchers have utilized fish primary cell cultures to study the effects of environmental factors, toxins, pathogens, and pharmaceutical compounds on cellular functions, providing valuable insights into fish health, disease pathogenesis, and drug development. The paper also discusses the application of fish primary cell cultures in aquaculture research, particularly in investigating fish growth, nutrition, reproduction, and stress responses. By mimicking the in vivo conditions in vitro, primary cell culture has proven instrumental in identifying key factors influencing fish health and performance, thereby contributing to the development of sustainable aquaculture practices.
Collapse
Affiliation(s)
- Lingjie He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Cheng Zhao
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China;
| | - Qi Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Ju Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| |
Collapse
|
2
|
Eide M, Goksøyr A, Yadetie F, Gilabert A, Bartosova Z, Frøysa HG, Fallahi S, Zhang X, Blaser N, Jonassen I, Bruheim P, Alendal G, Brun M, Porte C, Karlsen OA. Integrative omics-analysis of lipid metabolism regulation by peroxisome proliferator-activated receptor a and b agonists in male Atlantic cod. Front Physiol 2023; 14:1129089. [PMID: 37035678 PMCID: PMC10073473 DOI: 10.3389/fphys.2023.1129089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Lipid metabolism is essential in maintaining energy homeostasis in multicellular organisms. In vertebrates, the peroxisome proliferator-activated receptors (PPARs, NR1C) regulate the expression of many genes involved in these processes. Atlantic cod (Gadus morhua) is an important fish species in the North Atlantic ecosystem and in human nutrition, with a highly fatty liver. Here we study the involvement of Atlantic cod Ppar a and b subtypes in systemic regulation of lipid metabolism using two model agonists after in vivo exposure. WY-14,643, a specific PPARA ligand in mammals, activated cod Ppara1 and Ppara2 in vitro. In vivo, WY-14,643 caused a shift in lipid transport both at transcriptional and translational level in cod. However, WY-14,643 induced fewer genes in the fatty acid beta-oxidation pathway compared to that observed in rodents. Although GW501516 serves as a specific PPARB/D ligand in mammals, this compound activated cod Ppara1 and Ppara2 as well as Pparb in vitro. In vivo, it further induced transcription of Ppar target genes and caused changes in lipid composition of liver and plasma. The integrative approach provide a foundation for understanding how Ppars are engaged in regulating lipid metabolism in Atlantic cod physiology. We have shown that WY-14,643 and GW501516 activate Atlantic cod Ppara and Pparb, affect genes in lipid metabolism pathways, and induce changes in the lipid composition in plasma and liver microsomal membranes. Particularly, the combined transcriptomic, proteomics and lipidomics analyses revealed that effects of WY-14,643 on lipid metabolism are similar to what is known in mammalian studies, suggesting conservation of Ppara functions in mediating lipid metabolic processes in fish. The alterations in the lipid profiles observed after Ppar agonist exposure suggest that other chemicals with similar Ppar receptor affinities may cause disturbances in the lipid regulation of fish. Model organism: Atlantic cod (Gadus morhua). LSID: urn:lsid:zoobank.org:act:389BE401-2718-4CF2-BBAE-2E13A97A5E7B. COL Identifier: 6K72F.
Collapse
Affiliation(s)
- Marta Eide
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- *Correspondence: Anders Goksøyr,
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Alejandra Gilabert
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Barcelona, Spain
- Faculty of Science, National Distance Education University (UNED), Madrid, Spain
| | - Zdenka Bartosova
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Håvard G. Frøysa
- Department of Mathematics, University of Bergen, Bergen, Norway
- Institute of Marine Research (IMR), Bergen, Norway
| | - Shirin Fallahi
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nello Blaser
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Inge Jonassen
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Guttorm Alendal
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Morten Brun
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Cinta Porte
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Wang Z, Yue YX, Liu ZM, Yang LY, Li H, Li ZJ, Li GX, Wang YB, Tian YD, Kang XT, Liu XJ. Genome-Wide Analysis of the FABP Gene Family in Liver of Chicken (Gallus gallus): Identification,Dynamic Expression Profile, and RegulatoryMechanism. Int J Mol Sci 2019; 20:E5948. [PMID: 31779219 PMCID: PMC6928644 DOI: 10.3390/ijms20235948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
The fatty acid-binding protein (FABP) gene family, which encodes a group of fatty acid-trafficking molecules that affect cellular functions, has been studied extensively in mammals. However, little is known about the gene structure, expression profile, and regulatory mechanism of the gene family in chickens. In the present study, bioinformatics-based methods were used to identify the family members and investigate their evolutionary history and features of gene structure. Real-time PCR combined with in vivo and in vitro experiments were used to examine the spatiotemporal expression pattern, and explore the regulatory mechanism of FABP genes. The results show that nine members of the FABP gene family, which branched into two clusters and shared a conserved FATTYACIDBP domain, exist in the genome of chickens. Of these, seven FABP genes, including FABP1, FABP3-7, and FABP10 were abundantly expressed in the liver of hens. The expression levels of FABP1, FABP3, and FABP10 were significantly increased, FABP5 and FABP7 were significantly decreased, and FABP4 and FABP6 remained unchanged in hens at the peak laying stage in comparison to those at the pre-laying stage. Transcription of FABP1 and FABP3 were activated by estrogen via estrogen receptor (ER) α, whilst FABP10 was activated by estrogen via ERβ. Meanwhile, the expression of FABP1 was regulated by peroxisome proliferator activated receptor (PPAR) isoforms, of which tested PPARα and PPARβ agonists significantly inhibited the expression of FABP1, while tested PPARγ agonists significantly increased the expression of FABP1, but downregulated it when the concentration of the PPARγ agonist reached 100 nM. The expression of FABP3 was upregulated via tested PPARβ and PPARγ agonists, and the expression of FABP7 was selectively promoted via PPARγ. The expression of FABP10 was activated by all of the three tested PPAR agonists, but the expression of FABP4-6 was not affected by any of the PPAR agonists. In conclusion, members of the FABP gene family in chickens shared similar functional domains, gene structures, and evolutionary histories with mammalian species, but exhibited varying expression profiles and regulatory mechanisms. The results provide a valuable resource for better understanding the biological functions of individual FABP genes in chickens.
Collapse
Affiliation(s)
- Zhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
| | - Ya-Xin Yue
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
| | - Zi-Ming Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
| | - Li-Yu Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Zhuan-Jian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Guo-Xi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Yan-Bin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Ya-Dong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Xiang-Tao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Xiao-Jun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (Z.W.); (Y.-X.Y.); (Z.-M.L.); (L.-Y.Y.); (H.L.); (Z.-J.L.); (G.-X.L.); (Y.-B.W.); (Y.-D.T.); (X.-T.K.)
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| |
Collapse
|