1
|
Sukhan ZP, Cho Y, Hossen S, Cho DH, Kho KH. Molecular Characterization, Expression Analysis, and CRISPR/Cas9 Mediated Gene Disruption of Myogenic Regulatory Factor 4 (MRF4) in Nile Tilapia. Curr Issues Mol Biol 2024; 46:13725-13745. [PMID: 39727948 PMCID: PMC11727018 DOI: 10.3390/cimb46120820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Myogenic regulator factors (MRFs) are essential for skeletal muscle development in vertebrates, including fish. This study aimed to characterize the role of myogenic regulatory factor 4 (MRF4) in muscle development in Nile tilapia by cloning NT-MRF4 from muscle tissues. To explore the function of NT-MRF4, CRISPR/Cas9 gene editing was employed. The NT-MRF4 cDNA was 1146 bp long and had encoded 225 amino acids, featuring a myogenic basic domain, a helix-loop-helix domain, and a nuclear localization signal. NT-MRF4 mRNA was exclusively expressed in adult muscle tissues, with expression also observed during embryonic and larval stages. Food-deprived Nile tilapia exhibited significantly lower NT-MRF4 mRNA levels than the controls while re-feeding markedly increased expression. The CRISPR/Cas9 gene editing of NT-MRF4 successfully generated two types of gene disruption, leading to a frame-shift mutation in the NT-MRF4 protein. Expression analysis of MRF and MEF2 genes in gene-edited (GE) Nile tilapia revealed that MyoG expressions nearly doubled compared to wild-type (WT) fish, suggesting that MyoG compensates for the loss of MRF4 function. Additionally, MEF2b, MEF2d, and MEF2a expressions significantly increased in GE Nile tilapia, supporting continued muscle development. Overall, these findings suggest that NT-MRF4 regulates muscle development, while MyoG may compensate for its inactivation to sustain normal muscle growth.
Collapse
Affiliation(s)
| | | | | | | | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (Z.P.S.); (Y.C.); (S.H.); (D.H.C.)
| |
Collapse
|
2
|
Gui Y, Zhang Y, Zhang Q, Chen X, Wang F, Wu F, Gui Y, Li Q. The functional verification and analysis of Fugu promoter of cardiac gene tnni1a in zebrafish. Cells Dev 2022; 171:203801. [PMID: 35787465 DOI: 10.1016/j.cdev.2022.203801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023]
Abstract
Troponin I type 1b (Tnni1b) is thought to be a novel isoform that is expressed only in the zebrafish heart. Knocking down of tnni1b can lead to cardiac defects in zebrafish. Although both the zebrafish tnni1b and human troponin I1 (TNNI1) genes are thought to be closely associated with fatal cardiac development, the regulatory molecular mechanisms of these genes are poorly understood. Analyzing the functionally conserved sequence, especially in the noncoding regulatory region involved in gene expression, clarified these mechanisms. In this study, we isolated a 3 kb fragment upstream of Fugu tnni1a that can regulate green fluorescence protein (GFP) expression in a heart-specific manner, similar to the pattern of zebrafish homologue expression. Three evolutionarily conserved regions (ECRs) in the 5'-flanking sequence of Fugu tnni1a were identified by sequence alignment. Deletion analysis led to the identification of ECR2 as a core sequence that affects the heart-specific expression function of the Fugu tnni1a promoter. Interestingly, both the Fugu tnni1a promoter and ECR2 sequence were functionally conserved in zebrafish, although they shared no sequence similarity. Together, the findings of our study provided further evidence for the important role of tnni1a homologous in cardiac development and demonstrated that two functionally conserved sequences in the zebrafish and Fugu genomes may be ECRs, despite their lack of similarity.
Collapse
Affiliation(s)
- Yiting Gui
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xudong Chen
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Fang Wu
- Department of Neonatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Yonghao Gui
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| |
Collapse
|