1
|
Zhu L, Wang S, Zhao Z, Li B, Xi C, Xu X. The heat shock cognate protein 70 (HSC70) gene in the echiuran worm Urechis unicinctus: Cloning, tissue expression and response to sulfide exposure. Comp Biochem Physiol B Biochem Mol Biol 2025; 277:111077. [PMID: 39938591 DOI: 10.1016/j.cbpb.2025.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
To investigate the molecular characteristics of the heat shock cognate protein 70 (HSC70) gene in the echiuran worm Urechis unicinctus, the full-length complementary DNA (cDNA) sequence of HSC70 in U. unicinctus was cloned and characterized. Additionally, the expression of HSC70 in different tissues of U. unicinctus was detected after exposure to 0.25, 0.75, and 1.25 mg L-1 Na₂S for 3, 6, 12, 24, 48, and 72 h, respectively. Results showed that the full-length cDNA of the HSC70 gene was 2305 bp and encoded a deduced 658-amino acid (aa) protein. Three characteristic structural features of the HSP70 gene family: IVLVGGSTRIPKIQK (residues 334-348), IFDLGGGTFDVSV (residues 197-210), and IDLGTTYSCV (residues 9-18), were identified in the HSC70 amino acid sequence. Multiple sequence alignment showed that HSC70 was 87.25 % identical to Meretrix meretrix at the amino acid level, and phylogenetic analyses suggested that the HSC70 gene of U. unicinctus was most closely grouped with Urechis caupo. Additionally, HSC70 was expressed in all tested tissues, with the highest expression in hemolymph. HSC70 mRNA expression was significantly increased after sulfide exposure, reaching a peak 3-6 h into the exposure, suggesting that HSC70 expression was sensitive to environmental factors. Na2S exposure for 12 h significantly increased the muscle content of HSC70, while a significant decrease was observed after Na2S exposure for 72 h. Taken together, our study findings suggest that the HSC70 gene is rapidly induced in U. unicinctus in response to sulfide exposure.
Collapse
Affiliation(s)
- Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Sijie Wang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Ziyan Zhao
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Baiyu Li
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Chenxiao Xi
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xinghong Xu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
2
|
Dong H, Huang D, Zhang J, Xu D, Jiao X, Wang W. Exploring the innate immune system of Urechis unicinctus: Insights from full-length transcriptome analysis. Gene 2024; 928:148784. [PMID: 39047957 DOI: 10.1016/j.gene.2024.148784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The Echiura worm Urechis unicinctus refers to a common benthic invertebrate found in the intertidal zone of Huanghai as well as Bohai Bay. U. unicinctus is known to contain various physiologically active substances, making it highly valuable in terms of its edibility, medicinal properties, and economic potential. Nonetheless, the limited study on the immune system of U. unicinctus poses difficulties for its aquaculture and artificial reproduction. Marine invertebrates, including shellfish and U. unicinctus, are thought to primarily depend on their innate immune system for disease protection, owing to the severalinnate immune molecules they possess. Herein, we employed PacBio single-molecule real-time (SMRT) sequencing technology to perform the full-length transcriptome analysis of U. unicinctus individuals under five different conditions (room temperature (RT), low temperature (LT), high temperature (HT), without water (DRY), ultraviolet irradiation (UV)). Concequently, we identified 59,371 unigenes that had a 2,779 bp average length, 2,613 long non-coding RNAs (lncRNAs), 59,190 coding sequences (CDSs), 35,166 simple sequence repeats (SSRs), and 1,733 transcription factors (TFs), successfully annotating 90.58 % (53,778) of the unigenes. Subsequently, key factors associated with immune-related processes, such as non-self-recognition, cellular immune defenses, and humoral immune defenses, were searched. Our study also identified pattern recognition receptors (PRRs) that included 17 peptidoglycan recognition proteins (PGRPs), 13 Gram-negative binding proteins (GNBPs), 18 scavenger receptors (SRs), 74 toll-like receptors (TLRs), and 89 C-type lectins (CLTs). Altogether, the high-quality transcriptome obtained data will offer valuable insights for further investigations into U. unicinctus innate immune response, laying the foundation for subsequent molecular biology studies and aquaculture.
Collapse
Affiliation(s)
- Haomiao Dong
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Huang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai 264005, China
| | - Dong Xu
- Shandong Blue Ocean Technology Co., Ltd, Yantai 261400, China
| | - Xudong Jiao
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd, Yantai 261400, China.
| |
Collapse
|
3
|
Saleh AA, Mohamed AZ, Elnesr SS, Khafaga AF, Elwan H, Abdel-Aziz MF, Khaled AA, Hafez EE. Expression and Immune Response Profiles in Nile Tilapia ( Oreochromis niloticus) and European Sea Bass ( Dicentrarchus labrax) During Pathogen Challenge and Infection. Int J Mol Sci 2024; 25:12829. [PMID: 39684540 DOI: 10.3390/ijms252312829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Nile tilapia (Oreochromis niloticus) and European sea bass (Dicentrarchus labrax) are economically significant species in Mediterranean countries, serving essential roles in the aquaculture industry due to high market demand and nutritional value. They experience substantial losses from bacterial pathogens Vibrio anguillarum and Streptococcus iniae, particularly at the onset of the summer season. The immune mechanisms involved in fish infections by V. anguillarum and S. iniae remain poorly understood. This study investigated their impact through experiments with control and V. anguillarum- and S. iniae-infected groups for each species. Blood samples were collected at 1, 3, and 7 days post bacterial injection to assess biochemical and immunological parameters, including enzyme activities (AST and ALT), oxidative markers (SOD, GPX, CAT, and MDA), and leukocyte counts. Further analyses included phagocyte activity, lysozyme activity, IgM levels, and complement C3 and C4 levels. Muscle tissues were sampled at 1, 3, and 7 days post injection to assess mRNA expression levels of 18 immune-relevant genes. The focus was on cytokines and immune-related genes, including pro-inflammatory cytokines (TNF-α, TNF-β, IL-2, IL-6, IL-8, IL-12, and IFN-γ), major histocompatibility complex components (MHC-IIα and MHC-IIβ), cytokine receptors (CXCL-10 and CD4-L2), antimicrobial peptides (Pleurocidin and β-defensin), immune regulatory peptides (Thymosin β12, Leap 2, and Lysozyme g), and Galectins (Galectin-8 and Galectin-9). β-actin was used as the housekeeping gene for normalization. Significant species-specific responses were observed in N. Tilapia and E. Sea Bass when infected with V. anguillarum and S. iniae, highlighting differences in biochemical, immune, and gene expression profiles. Notably, in N. Tilapia, AST levels significantly increased by day 7 during S. iniae infection, reaching 45.00 ± 3.00 (p < 0.05), indicating late-stage acute stress or tissue damage. Conversely, E. Sea Bass exhibited a significant rise in ALT levels by day 7 in the S. iniae group, peaking at 33.5 ± 3.20 (p < 0.05), suggesting liver distress or a systemic inflammatory response. On the immunological front, N. Tilapia showed significant increases in respiratory burst activity on day 1 for both pathogens, with values of 0.28 ± 0.03 for V. anguillarum and 0.25 ± 0.02 for S. iniae (p < 0.05), indicating robust initial immune activation. Finally, the gene expression analysis revealed a pronounced peak of TNF-α in E. Sea Bass by day 7 post V. anguillarum infection with a fold change of 6.120, suggesting a strong species-specific pro-inflammatory response strategy. Understanding these responses provides critical insights for enhancing disease management and productivity in aquaculture operations.
Collapse
Affiliation(s)
- Ahmed A Saleh
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria 11865, Egypt
| | - Asmaa Z Mohamed
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Hamada Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt
| | - Mohamed F Abdel-Aziz
- Department of Aquaculture and Biotechnology, Faculty of Aquaculture and Marine Fisheries, Arish University, Arish 45511, Egypt
| | - Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Elsayed E Hafez
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria 21934, Egypt
| |
Collapse
|
4
|
Li X, Ma Y, Zuo Y, Liu Z, Wang Q, Ren D, He Y, Cong H, Wu L, Zhou H. The efficient enrichment of marine peptides from the protein hydrolysate of the marine worm Urechis unicinctus by using mesoporous materials MCM-41, SBA-15 and CMK-3. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2405-2414. [PMID: 33997883 DOI: 10.1039/d1ay00616a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peptides found in marine life have various specific activities due to their special growth environment, and there is increasing interest in the isolation and concentration of these biofunctional compounds. In this study, the protein hydrolysate of the marine worm Urechis unicinctus was prepared by enzymolysis and enriched by using mesoporous materials of silica MCM-41 and SBA-15 and carbon CMK-3. The differences in pore structures and elemental composition of these materials lead to differences in surface area and hydrophobicity. The adsorption capacities of peptides were 459.5 mg g-1, 431.3 mg g-1, and 626.3 mg g-1 for MCM-41, SBA-15 and CMK-3, respectively. Adsorption kinetics studies showed that the pseudo-second-order model fit the adsorption process better, where both external mass transfer and intraparticle diffusion affected the adsorption, while the Langmuir model better fit the adsorption of peptides on MCM-41 and SBA-15 and the Freundlich model was more suitable for CMK-3. Aqueous acetonitrile (ACN, 50/50, v/v) yielded the most extracted peptides. MALDI-TOF mass spectrometry of the extracted peptides showed that the three mesoporous materials, especially the CMK-3, gave good enrichment results. This study demonstrates the great potential of mesoporous materials in the enrichment of marine biofunctional peptides.
Collapse
Affiliation(s)
- Xinwei Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, Liaoning 116023, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The coelomic cavity is part of the main body plan of annelids. This fluid filled space takes up a considerable volume of the body and serves as an important site of exchange of both metabolites and proteins. In addition to low molecular substances such as amino acids and glucose and lactate, the coelomic fluid contains different proteins that can arise through release from adjacent tissues (intestine) or from secretion by coelomic cells. In this chapter, we will review the current knowledge about the proteins in the annelid coelomic fluid. Given the number of more than 20,000 extant annelid species, existing studies are confined to a relatively few species. Most studies on the oligochaetes are confined to the earthworms-clearly because of their important role in soil biology. In the polychaetes (which might represent a paraphyletic group) on the other hand, studies have focused on a few species of the Nereidid family. The proteins present in the coelomic fluid serve different functions and these have been studied in different taxonomic groups. In oligochaetes, proteins involved antibacterial defense such as lysenin and fetidin have received much attention in past and ongoing studies. In polychaetes, in contrast, proteins involved in vitellogenesis and reproduction, and the vitellogenic function of coelomic cells have been investigated in more detail. The metal binding metallothioneins as well as antimicrobial peptides, have been investigated in both oligochaetes and polychaetes. In the light of the literature available, this review will focus on lipoproteins, especially vitellogenin, and proteins involved in defense reactions. Other annelid groups such as the Pogonophora, Echiura, and Sipuncula (now considered polychaetes), have not received much attention and therefore, this overview is far from being complete.
Collapse
|