1
|
Hu C, Dai W, Zhu X, Yao H, Lin Z, Dong Y, Lv L. Expression and Functional Analysis of AMT1 Gene Responding to High Ammonia Stress in Razor Clam ( Sinonovacula constricta). Animals (Basel) 2023; 13:ani13101638. [PMID: 37238069 DOI: 10.3390/ani13101638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Ammonium transporter 1 (AMT1), a member of ammonia (NH3/NH4+) transport proteins, has been found to have ammonia transport activity in plants and microorganisms. However, the functional characteristics and molecular mechanisms of AMT1 in mollusks remain unclear. The razor clam (Sinonovacula constricta) is a suitable model species to explore the molecular mechanism of ammonia excretion because of the high concentration of ambient ammonia it is exposed to in the clam-fish-shrimp polyculture system. Here, the expression of AMT1 in S. constricta (Sc-AMT1) in response to high ammonia (12.85 mmol/L NH4Cl) stress was identified by real-time quantitative PCR (qRT-PCR), Western blotting, RNA interference, and immunofluorescence analysis. Additionally, the association between the SNP_g.15211125A > T linked with Sc-AMT1 and ammonia tolerance was validated by kompetitive allele-specific PCR (KASP). A significant upregulated expression of Sc-AMT1 was observed during ammonia exposure, and Sc-AMT1 was found to be localized in the flat cells of gill. Moreover, the interference with Sc-AMT1 significantly upregulated the hemolymph ammonia levels, accompanied by the increased mRNA expression of Rhesus glycoprotein (Rh). Taken together, our findings imply that AMT1 may be a primary contributor to ammonia excretion in S. constricta, which is the basis of their ability to inhabit benthic water with high ammonia levels.
Collapse
Affiliation(s)
- Chenxin Hu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Xiaojie Zhu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Hanhan Yao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Yinghui Dong
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Liyuan Lv
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| |
Collapse
|
2
|
Genome-wide characterization of the cytosolic sulfotransferase 1B member 1 (SULT1B1) family and its expression responses to sulfide stress in the razor clam Sinonovacula constricta. Gene 2023; 856:147136. [PMID: 36572072 DOI: 10.1016/j.gene.2022.147136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The razor clam (Sinonovacula constricta), a typical burrowing organism in the intertidal zones, is often exposed to sulfide environment and shows strong sulfide tolerance. Located downstream of the sulfur metabolism pathway, cytosolic sulfotransferase family 1B member 1 (SULT1B1) is a key enzyme catalysing the sulfonation reaction, and plays an important role in the biotransformation of endogenous substances such as thyroid hormones (THs). To investigate their roles in sulfide resistance, a systematic analysis of S. constricta SULT1B1s (ScSULT1B1s), including genomic distribution, phylogenetic relationships, gene structure, conserved motifs, and expression profiles under sulfide stress, was performed. A total of 10 ScSULT1B1 genes were found in the S. constricta genome. Sequence analysis showed that ScSULT1B1 gene family encoded 155-425 amino acids, containing four catalytic active sites (K, N, H, and S), one PAPS binding domain at the N-terminus, and one PAPS binding and dimerization domain at the C-terminus. The spatial-temporal expression patterns of ScSULT1B1s were further estimated by quantitative real-time PCR (qRT-PCR). Among them, partial ScSULT1B1s showed significantly high expression in the gill, hepatopancreas, and siphon. Furthermore, the response expression of certain ScSULT1B1s significantly fluctuated under sulfide stress. Together, our results suggest that ScSULT1B1s, by mediating the sulfonation reaction, may regulate THs levels to maintain basic metabolic and immune functions, making S. constricta highly sulfide tolerant.
Collapse
|
3
|
Liu H, Zha S, Yang Z, Zhang W, Lin Z, Wang S, Bao Y. Acute sulfide exposure induces hemocyte toxicity and microbiota dysbiosis in blood clam Tegillarca granosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106224. [PMID: 35753215 DOI: 10.1016/j.aquatox.2022.106224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/01/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Sulfide are widely accumulated in aquatic environments under anaerobic conditions, which cause health problems of aquatic animals, yet their toxic effects to benthic bivalves are not well understood. We investigated the effects of sulfide on innate immunity of the blood clam Tegillarca granosa. Immunity-related indicators and hemolymph microbiota were investigated in the clams exposed to sulfide (via 10, 100 and 1000 μmol/L of Na2S) over a 7-day period. The results showed that cellular immune responses in T. granosa were affected by exposure to high sulfide concentration (1000 μmol/L Na2S), as indicated by total counts of hemocytes (THC), cell viability, ROS levels and phagocytic activities, suggesting that sulfide stress induces T. granosa more vulnerable to pathogen challenges. In addition, the Na2S-induced stress also reshaped the hemolymph microbial community structure of T. granosa that some original genera decreased, such as Lactobacillus, Desulfovibrio and Akkermansia; some genera increased, such as Vibrio and Pseudoalteromonas in sulfide stress group. Sulfide exposure promoted the proliferation of opportunistic pathogen and reduced the diversity of microbial community in the hemolymph of T. granosa. In summary, sulfide stress had marked hemocytotoxicity, reduced immune-cell activity and increased bacterial infections in the blood clam.
Collapse
Affiliation(s)
- Hongxing Liu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China
| | - Shanjie Zha
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zexin Yang
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Weifeng Zhang
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yongbo Bao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China.
| |
Collapse
|
4
|
Sun Y, Wang M, Zhong Z, Chen H, Wang H, Zhou L, Cao L, Fu L, Zhang H, Lian C, Sun S, Li C. Adaption to hydrogen sulfide-rich environments: Strategies for active detoxification in deep-sea symbiotic mussels, Gigantidas platifrons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150054. [PMID: 34509839 DOI: 10.1016/j.scitotenv.2021.150054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 05/27/2023]
Abstract
The deep-sea mussel Gigantidas platifrons is a representative species that relies on nutrition provided by chemoautotrophic endosymbiotic bacteria to survive in both hydrothermal vent and methane seep environments. However, vent and seep habitats have distinct geochemical features, with vents being more harsh than seeps because of abundant toxic chemical substances, particularly hydrogen sulfide (H2S). Until now, the adaptive strategies of G. platifrons in a heterogeneous environment and their sulfide detoxification mechanisms are still unclear. Herein, we conducted 16S rDNA sequencing and metatranscriptome sequencing of G. platifrons collected from a methane seep at Formosa Ridge in the South China Sea and a hydrothermal vent at Iheya North Knoll in the Mid-Okinawa Trough to provide a model for understanding environmental adaption and sulfide detoxification mechanisms, and a three-day laboratory controlled Na2S stress experiment to test the transcriptomic responses under sulfide stress. The results revealed the active detoxification of sulfide in G. platifrons gills. First, epibiotic Campylobacterota bacteria were more abundant in vent mussels and contributed to environmental adaptation by active oxidation of extracellular H2S. Notably, a key sulfide-oxidizing gene, sulfide:quinone oxidoreductase (sqr), derived from the methanotrophic endosymbiont, was significantly upregulated in vent mussels, indicating the oxidization of intracellular sulfide by the endosymbiont. In addition, transcriptomic comparison further suggested that genes involved in oxidative phosphorylation and mitochondrial sulfide oxidization pathway played important roles in the sulfide tolerance of the host mussels. Moreover, transcriptomic analysis of Na2S stressed mussels confirmed the upregulation of oxidative phosphorylation and sulfide oxidization genes in response to sulfide exposure. Overall, this study provided a systematic transcriptional analysis of both the active bacterial community members and the host mussels, suggesting that the epibionts, endosymbionts, and mussel host collaborated on sulfide detoxification from extracellular to intracellular space to adapt to harsh H2S-rich environments.
Collapse
Affiliation(s)
- Yan Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lulu Fu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
5
|
Wang JJ, Xu LZJ, Huang BC, Li J, Jin RC. Multiple electron acceptor-mediated sulfur autotrophic denitrification: Nitrogen source competition, long-term performance and microbial community evolution. BIORESOURCE TECHNOLOGY 2021; 329:124918. [PMID: 33684839 DOI: 10.1016/j.biortech.2021.124918] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Sulfur-driven autotrophic denitrification (SDAD) is feasible for the treatment of low-C/N-ratio and sulfur-laden wastewaters. The nitrite accumulated in SDAD will affect the performance and stability of the system but can be a potential electron acceptor. Thus, single- and multiple-electron acceptor-mediated SDAD systems were investigated. Batch assays revealed that nitrite and nitrate were the preferential options in the SDAD system with single and multiple electron acceptors, respectively. Synchronous nitrogen and sulfur removal was successfully achieved in continuous flow experiments with multiple electron acceptors, and the system could adapt well to high concentrations of sulfide, nitrate and nitrite (i.e., 720, 108 and 64.8 mg L-1, respectively), with the predominant genera shifting from Thiobacillus (48.88%) at the initial stage to unclassified_p_Firmicute (34.24%) and Syner-01 (12.31%) at the last stage. This work provides a fundamental basis for applying and regulating SDAD with multiple electron acceptors for the remediation of nitrogen- and sulfide- laden wastewaters.
Collapse
Affiliation(s)
- Jiao-Jiao Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lian-Zeng-Ji Xu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
6
|
Zhang T, Qin Z, Liu D, Wei M, Fu Z, Wang Q, Ma Y, Zhang Z. A novel transcription factor MRPS27 up-regulates the expression of sqr, a key gene of mitochondrial sulfide metabolism in echiuran worm Urechis unicinctus. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108997. [PMID: 33549829 DOI: 10.1016/j.cbpc.2021.108997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide is a natural, widely distributed, poisonous substance and sulfide: quinone oxidoreductase (SQR) is responsible for oxidizing hydrogen sulfide to less toxic sulfur compounds. The increase of SQR mRNA level is an important mechanism for organisms to adapt to hydrogen sulfide-rich environments. However, its transcriptional regulation mechanism is not very clear. In this study, a mitochondrial 28S ribosomal protein S27 (MRPS27), which has never been reported as a transcription factor, was screened by yeast one-hybrid experiment from the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. Western blotting indicated that UuMRPS27 contents increased significantly in the nuclear extract of hindgut under exposed to 150 μM sulfide. ChIP and EMSA assays demonstrated that UuMRPS27 did bind to the sqr proximal promoter, the key binding sequence was CTAGAG (+12 to +17 of the promoter) detected by DNase I footprinting assay as well as transient transfection experiments. Furthermore, UuMRPS27, as a transcription activator, exhibited the highest transcription activity compared with other reported sqr transcription factors. Our data revealed for the first time the role of MRPS27 acting as a transcription factor which expanded the understanding of sqr transcriptional regulation in sulfide metabolism mechanism.
Collapse
Affiliation(s)
- Tingting Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhong Fu
- Hebei Research Institute of Marine and Fishery Science, Qinhuangdao 066002, China
| | - Qing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
7
|
Defense responses of sulfur dioxygenase to sulfide stress in the razor clam Sinonovacula constricta. Genes Genomics 2021; 43:513-522. [PMID: 33721282 DOI: 10.1007/s13258-021-01077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Sulfide is a well-known toxicant widely distributed in the culture environment. As a representative burrowing benthic bivalve, the razor clam Sinonovacula constricta is highly sulfide tolerant. Mitochondrial sulfide oxidation is an important way for sulfide detoxification, where sulfur dioxygenase (SDO) is the second key enzyme. OBJECTIVE To investigate the mechanism of sulfide tolerance in S. constricta, the molecular characterization of its SDO (designated as ScSDO) was studied. METHODS The cDNA sequence of ScSDO was cloned by RACE technique. The response of ScSDO in gills and livers of S. constricta was investigated during sulfide exposure (50, 150, and 300 μM sulfide) for 0, 3, 6, 12, 24, 48, 72, and 96 h by qRT-PCR. Moreover, the temporal expression of ScSDO protein in S. constricta gills after exposure to 150 μM sulfide was detected by Western blot. The subcellular location of ScSDO was identified by TargetP 1.1 prediction and Western Blot analysis. RESULTS The full-length cDNA of ScSDO was 2914 bp, encoding a protein of 304 amino acids. The deduced ScSDO protein was highly conserved, containing the signature HXHXDH motif of the metallo-β-lactamase superfamily and two metal-binding sites, of which metal-binding site I is known to be the catalytically active center. Subcellular localization confirmed that ScSDO was located only in the mitochondria. Responding to the sulfide exposure, distinct time-dependent increases in ScSDO expression were detected at both mRNA and protein levels. Moreover, the gills exhibited a higher ScSDO expression level than the livers. CONCLUSIONS All of our results suggest that ScSDO plays an important role in mitochondrial sulfide oxidation during sulfide stress, making S. constricta highly sulfide tolerant. In addition, as a respiratory tissue, the gills play a more critical role in sulfide detoxification.
Collapse
|