1
|
Liu L, Hu R, You H, Li J, Liu Y, Li Q, Wu X, Huang J, Cai X, Wang M, Wei L. Formononetin ameliorates muscle atrophy by regulating myostatin-mediated PI3K/Akt/FoxO3a pathway and satellite cell function in chronic kidney disease. J Cell Mol Med 2021; 25:1493-1506. [PMID: 33405354 PMCID: PMC7875933 DOI: 10.1111/jcmm.16238] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle atrophy is a common complication in chronic kidney disease (CKD). Inflammation and myostatin play important roles in CKD muscle atrophy. Formononetin (FMN), which is a major bioactive isoflavone compound in Astragalus membranaceus, exerts anti‐inflammatory effects and the promotion of myogenic differentiation. Our study is based on myostatin to explore the effects and mechanisms of FMN in relation to CKD muscle atrophy. In this study, CKD rats and tumour necrosis factor α (TNF‐α)‐induced C2C12 myotubes were used for in vivo and in vitro models of muscle atrophy. The results showed that FMN significantly improved the renal function, nutritional status and inflammatory markers in CKD rats. Values for bodyweight, weight of tibialis anterior and gastrocnemius muscles, and cross‐sectional area (CSA) of skeletal muscles were significantly larger in the FMN treatment rats. Furthermore, FMN significantly suppressed the expressions of MuRF‐1, MAFbx and myostatin in the muscles of CKD rats and the TNF‐α‐induced C2C12 myotubes. Importantly, FMN significantly increased the phosphorylation of PI3K, Akt, and FoxO3a and the expressions of the myogenic proliferation and differentiation markers, myogenic differentiation factor D (MyoD) and myogenin in muscles of CKD rats and the C2C12 myotubes. Similar results were observed in TNF‐α‐induced C2C12 myotubes transfected with myostatin‐small interfering RNA (si‐myostatin). Notably, myostatin overexpression plasmid (myostatin OE) abolished the effect of FMN on the phosphorylation of the PI3K/Akt/FoxO3a pathway and the expressions of MyoD and myogenin. Our findings suggest that FMN ameliorates muscle atrophy related to myostatin‐mediated PI3K/Akt/FoxO3a pathway and satellite cell function.
Collapse
Affiliation(s)
- Lingyu Liu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan You
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingjing Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, China
| | - Yangyang Liu
- Huangpu People's Hospital of Zhongshan, Zhongshan, China
| | - Qiang Li
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohui Wu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiawen Huang
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiangsheng Cai
- Center for Medical Experiments, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lianbo Wei
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
2
|
Lou Z, Zhao Y, Zhang Y, Zheng B, Feng H, Hosain MA, Xue L. MiR-2014-5p and miR-1231-5p regulate muscle growth of Larimichthys crocea by targeting MSTN gene. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110535. [PMID: 33186699 DOI: 10.1016/j.cbpb.2020.110535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) play an important role in regulating gene expression, and myostatin (MSTN) has been widely recognized as a key gene for muscle growth and development. Through high-throughput sequencing to study the effects of starvation on miRNA transcriptomes in Larimichthys crocea muscle tissue, we found that the expression of miR-2014, miR-1231 and miR-1470 were significantly different between fasting and normal feeding Larimichthys crocea. Bioinformatics analysis predicted that miR-2014, miR-1231 and miR-1470 target MSTN mRNA 3'UTR. To verify the accuracy of predictions, we constructed double luciferase plasmids containing MSTN 3'UTR and confirmed that miR-2014-5p and miR-1231-5p can inhibit MSTN expression by targeting MSTN 3'UTR using double luciferase experiments, while miR-1470 is not involved in regulation. Subsequent site-directed mutation experiments reflected the specificity of the target sequence. In addition, quantitative PCR experiments revealed that miR-2014-5p and miR-1231-5p may participate in the regulation of MSTN expression in fasting and refeeding period, respectively. These results implied that miRNA may take part in muscle growth regulation during starvation. It provides some insights into the molecular regulation mechanism of MSTN in response to starvation stress in fish.
Collapse
Affiliation(s)
- Zhengjia Lou
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yayun Zhao
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yu Zhang
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Baoxiao Zheng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Huijie Feng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | | | - Liangyi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|