1
|
Chen X, Bai Y, Ma J, Wang A, Xu D. Comparative transcriptome analysis of gill tissue response to hypoxia stress in the Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110081. [PMID: 39566594 DOI: 10.1016/j.cbpc.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Crustaceans often encounter the occurrence of various hypoxic situations, and in order to cope with this situation, they have evolved a series of antioxidant defenses against hypoxic stress. The present study was conducted to investigate the physiological and molecular regulation of hypoxic stress in the Chinese mitten crab (Eriocheir sinensis). We used the method of reducing dissolved oxygen in water to treat the juvenile E. sinensis with hypoxia. The results showed that total antioxidant capacity, superoxide dismutase, catalase and malondialdehyde contents in the gills of juvenile crabs were significantly elevated under hypoxia. In addition, gill tissues from normoxic control (NC), hypoxia-sensitive (HS) and hypoxia-tolerant (HT) groups were analysed using transcriptomic sequencing. The results revealed that 2124, 2946 and 2309 differentially expressed genes (DEGs) were found in NC vs. HS, NC vs. HT and HS vs. HT, respectively. The analysis of KEGG pathway enrichment indicated DEGs were predominantly enriched in oxidative phosphorylation, adipocytokine signaling pathway, and protein processing in endoplasmic reticulum in HS vs. HT. Enrichment of the MAPK signaling pathway, apoptosis, glucagon signaling pathway, and arachidonic acid metabolism was also found in the comparisons of NC vs. HS and NC vs. HT. The DEGs in these pathways may play a key role in gill tolerance to hypoxia. These results provide new insights and references for the oxidative defense and adaptive regulatory mechanisms of gill tissues of juvenile E. sinensis in response to hypoxic stress.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yulin Bai
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Junlei Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Anqi Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongpo Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| |
Collapse
|
2
|
Mou CY, Li Q, Huang ZP, Ke HY, Zhao H, Zhao ZM, Duan YL, Li HD, Xiao Y, Qian ZM, Du J, Zhou J, Zhang L. PacBio single-molecule long-read sequencing provides new insights into the complexity of full-length transcripts in oriental river prawn, macrobrachium nipponense. BMC Genomics 2023; 24:340. [PMID: 37340366 DOI: 10.1186/s12864-023-09442-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/11/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Oriental river prawn (Macrobrachium nipponense) is one of the most dominant species in shrimp farming in China, which is a rich source of protein and contributes to a significant impact on the quality of human life. Thus, more complete and accurate annotation of gene models are important for the breeding research of oriental river prawn. RESULTS A full-length transcriptome of oriental river prawn muscle was obtained using the PacBio Sequel platform. Then, 37.99 Gb of subreads were sequenced, including 584,498 circular consensus sequences, among which 512,216 were full length non-chimeric sequences. After Illumina-based correction of long PacBio reads, 6,599 error-corrected isoforms were identified. Transcriptome structural analysis revealed 2,263 and 2,555 alternative splicing (AS) events and alternative polyadenylation (APA) sites, respectively. In total, 620 novel genes (NGs), 197 putative transcription factors (TFs), and 291 novel long non-coding RNAs (lncRNAs) were identified. CONCLUSIONS In summary, this study offers novel insights into the transcriptome complexity and diversity of this prawn species, and provides valuable information for understanding the genomic structure and improving the draft genome annotation of oriental river prawn.
Collapse
Affiliation(s)
- Cheng-Yan Mou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Zhi-Peng Huang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Hong-Yu Ke
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Zhong-Meng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Yuan-Liang Duan
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Hua-Dong Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Yu Xiao
- Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Zhou-Ming Qian
- Chengdu Eaters Agricultural Group Co., Ltd, Chengdu, Sichuan, 610000, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China.
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China.
| |
Collapse
|
3
|
Zhou D, Wang C, Zheng J, Zhao J, Wei S, Xiong Y, Limbu SM, Kong Y, Cao F, Ding Z. Dietary thiamine modulates carbohydrate metabolism, antioxidant status, and alleviates hypoxia stress in oriental river prawn Macrobrachium nipponense (de Haan). FISH & SHELLFISH IMMUNOLOGY 2022; 131:42-53. [PMID: 36191902 DOI: 10.1016/j.fsi.2022.09.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Hypoxia is one of the challenges in prawns aquaculture. However, the role of thiamine, which is a coenzyme in carbohydrate metabolism with antioxidant properties, in reducing hypoxia in prawns aquaculture is currently unknown. We investigated the effects of thiamine on antioxidant status, carbohydrate metabolism and acute hypoxia in oriental river prawn, Macrobrachium nipponense. One thousand eight hundred prawns (0.123 ± 0.003 g) were fed five diets (60 prawns each tank, six replicates per diet) supplemented with graded thiamine levels (5.69, 70.70, 133.67, 268.33 and 532.00 mg/kg dry mater) for eight weeks and then exposed to hypoxia stress for 12 h followed by reoxyegnation for 12 h. The results showed that, under normoxia, prawns fed the 133.67 or 268.33 mg/kg thiamine diet had significantly lower glucose 6-phosphatedehydrogenase, succinate dehydrogenase and phosphoenolpyruvate carboxykinase activities than those fed the other diets. Moreover, total antioxidant capacity (T-AOC) increased significantly when prawns were fed the 133.67 mg/kg thiamine diet. Superoxide dismutase (SOD) activity and malonaldehyde (MDA) content also increased significantly when prawns were fed the 268.33 or 532.00 mg/kg thiamine diet under hypoxia. And the significantly increased SOD activity and MDA level also observed in prawns fed 532.00 mg/kg thiamine under reoxygenation. Under normoxia, prawns fed the 70.70 or 133.67 mg/kg thiamine diet decreased the mRNA expressions of AMP-activated protein kinase-alpha (AMPK-α), pyruvate dehydrogenase-E1-α subunit (PDH-E1-α) and hypoxia-inducible factor-1s (HIF-1α, HIF-1β), but increased the mRNA expressions of phosphofructokinase (PFK) significantly. After 12 h of hypoxia, the energy metabolism related genes (AMPK-β, AMPK-γ, PFK, PDH-E1-α), hypoxia-inducible factor related genes (HIF-1α, HIF-1β) and thiamine transporter gene (SLC19A2) were up-regulated significantly in prawns fed the 133.67 or 268.33 mg/kg thiamine diets. After 12 h of reoxygenation, prawns fed the 133.67 or 268.33 mg/kg diet significantly decreased the SOD activity, MDA level and SLC19A2 mRNA expression compared with other diets. The optimum thiamine was 161.20 mg/kg for minimum MDA content and 143.17 mg/kg for maximum T-AOC activity based on cubic regression analysis. In summary, supplementing 143.17 to 161.20 mg/kg thiamine in the diets for M. nipponense improves the antioxidant capacity under normoxia and reduces the oxidative damage under hypoxia stress.
Collapse
Affiliation(s)
- Dongsheng Zhou
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Chengli Wang
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu, China
| | - Jinxian Zheng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Jianhua Zhao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Shanshan Wei
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Yunfeng Xiong
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P.O. Box 35091, Dar es Salaam, Tanzania
| | - Youqin Kong
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Fang Cao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Zhili Ding
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
4
|
Armstrong EK, Mondon J, Miller AD, Revill AT, Stephenson SA, Tan MH, Greenfield P, Tromp JJ, Corbett P, Hook SE. Transcriptomic and Histological Analysis of the Greentail Prawn (Metapenaeus bennettae) Following Light Crude Oil Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2162-2180. [PMID: 35815472 PMCID: PMC9545365 DOI: 10.1002/etc.5413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/02/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Oil spills pose a significant threat to marine biodiversity. Crude oil can partition into sediments where it may be persistent, placing benthic species such as decapods at particular risk of exposure. Transcriptomic and histological tools are often used to investigate the effects of hydrocarbon exposure on marine organisms following oil spill events, allowing for the identification of metabolic pathways impacted by oil exposure. However, there is limited information available for decapod crustaceans, many of which carry significant economic value. In the present study, we assess the sublethal impacts of crude oil exposure in the commercially important Australian greentail prawn (Metapenaeus bennettae) using transcriptomic and histological analyses. Prawns exposed to light, unweathered crude oil "spiked" sediments for 90 h were transferred to clean sediments for a further 72 h to assess recovery. Chemical analyses indicated that polycyclic aromatic hydrocarbons increased by approximately 65% and 91% in prawn muscle following 24 and 90 h of exposure, respectively, and significantly decreased during 24- and 72-h recovery periods. Transcriptomic responses followed an exposure and recovery pattern with innate immunity and nutrient metabolism transcripts significantly lowered in abundance after 24 h of exposure and were higher in abundance after 72 h of recovery. In addition, transcription/translation, cellular responses, and DNA repair pathways were significantly impacted after 24 h of exposure and recovered after 72 h of recovery. However, histological alterations such as tubule atrophy indicated an increase in severity after 24 and 72 h of recovery. The present study provides new insights into the sublethal impacts of crude oil exposure in greentail prawns and identifies molecular pathways altered by exposure. We expect these findings to inform future management associated with oil extraction activity and spills. Environ Toxicol Chem 2022;41:2162-2180. © 2022 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Emily K. Armstrong
- School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityWaurn PondsVICAustralia
- CSIRO Oceans and AtmosphereHobartTASAustralia
| | - Julie Mondon
- School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityWaurn PondsVICAustralia
| | - Adam D. Miller
- School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityWaurn PondsVICAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVICAustralia
| | | | | | - Mun Hua Tan
- School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityWaurn PondsVICAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVICAustralia
| | | | - Jared J. Tromp
- School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityWaurn PondsVICAustralia
| | - Patricia Corbett
- School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityWaurn PondsVICAustralia
| | | |
Collapse
|
5
|
Wang D, Liu X, Zhang J, Gao B, Liu P, Li J, Meng X. Identification of Neuropeptides Using Long-Read RNA-Seq in the Swimming Crab Portunus trituberculatus, and Their Expression Profile Under Acute Ammonia Stress. Front Physiol 2022; 13:910585. [PMID: 35651875 PMCID: PMC9149262 DOI: 10.3389/fphys.2022.910585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Daixia Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaochen Liu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingyan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Baoquan Gao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ping Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xianliang Meng
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Xianliang Meng,
| |
Collapse
|
6
|
Xu Y, Lin H, Yan W, Li J, Sun M, Chen J, Xu Z. Full-Length Transcriptome of Red Swamp Crayfish Hepatopancreas Reveals Candidate Genes in Hif-1 and Antioxidant Pathways in Response to Hypoxia-Reoxygenation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:55-67. [PMID: 34997878 DOI: 10.1007/s10126-021-10086-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Red swamp crayfish is particularly prone to exposure to hypoxia-reoxygenation stress on account of the respiration and rhythmic, light-dependent photosynthetic activity of the algae and aquatic grass. Up to now, the regulation mechanisms of the adverse effects of hypoxia-reoxygenation for this species were still unknown, especially the roles of the antioxidant enzymes in reducing oxidative damage during reoxygenation. To screen for vital genes or pathways upon hypoxic-reoxygenation stress, hepatopancreas gene expression profiles were investigated by using a strategy combining second and third generation sequencing. Five groups of samples, including hypoxia for 1 and 6 h with DO of 1.0 mg/L, reoxygenation for 1 and 12 h with DO of 6.8 mg/L, and the samples under normoxia condition, were used for transcriptome sequencing. Twenty Illumina cDNA libraries were prepared to screen for the differentially expressed genes (DEGs) among the 5 groups of samples. Based on the assembled reference full-length transcriptome, 389 and 533 significantly DEGs were identified in the groups under severe hypoxia treatment for 1 and 6 h, respectively. The top three enriched pathways for these DEGs were "protein processing in endoplasmic reticulum," "MAPK signaling pathway," and "endocytosis." Among these DEGs, hypoxia-inducible factor 1α (Hif-1α) and some Hif-1 downstream genes, such as Ugt-1, Egfr, Igfbp-1, Pk, and Hsp70, were significant differentially expressed when exposed to hypoxia stress. A series of antioxidant enzymes, including two types of superoxide dismutase (Cu/ZnSOD and MnSOD), catalase (CAT), and glutathione peroxidase (GPx), were identified to be differentially expressed during hypoxia-reoxygenation treatment, implying their distinct modulation roles on reoxygenation-induced oxidative stress. The full-length transcriptome and the critical genes characterized should contribute to the revelation of intrinsic molecular mechanism being associated with hypoxia/reoxygenation regulation and provide useful foundation for future genetic breeding of the red swamp crayfish.
Collapse
Affiliation(s)
- Yu Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Hai Lin
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Weihui Yan
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Jiajia Li
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Mengling Sun
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Jiaping Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China.
| |
Collapse
|
7
|
Sun S, Chen Y, Hu R. Aquatic hypoxia disturbs oriental river prawn (Macrobrachium nipponense) testicular development: A cross-generational study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115093. [PMID: 32622004 DOI: 10.1016/j.envpol.2020.115093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Recently, we reported that hypoxia disrupts the endocrine system and causes metabolic abnormalities in prawns. Although transgenerational impairment effects of hypoxia have become a hot topic in vertebrate, it is unknown whether hypoxia could exert cross-generational effects on testicular function crustaceans. The present study aimed to investigate hypoxia's toxic effects on the testicular function of oriental river prawns (Macrobrachium nipponense) and offspring development. Hypoxia disrupted testicular germ cells quality, caused sex hormone imbalance (testosterone and estradiol), and delayed testicular development. The F1 generation derived from male prawns exposed to hypoxia showed retarded embryonic development, and reduced hatching success and larval development, despite not being exposed to hypoxia. Analysis of the transcriptome the F0 generation (exposed to hypoxia) showed that the impaired testicular functions were associated with changes to mitochondrial oxidative phosphorylation, apoptosis, and steroid biosynthesis. Interestingly, quantitative real-time PCR confirmed that hypoxia could significantly suppress the expression of antioxidant and gonad development-related genes in the testis of the F1 generations, with and without continued hypoxia exposures. In addition, paternal exposure to hypoxia could result in a higher production of reactive oxygen species in offspring testis tissue compared with those without hypoxia exposure. The cross-generational effects of testicular function implied that the sustainability of natural freshwater prawn populations would be threatened by chronic hypoxia.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Yinxiang Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Ran Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
8
|
Sun S, Zhu M, Pan F, Feng J, Li J. Identifying Neuropeptide and G Protein-Coupled Receptors of Juvenile Oriental River Prawn ( Macrobrachium nipponense) in Response to Salinity Acclimation. Front Endocrinol (Lausanne) 2020; 11:623. [PMID: 33013701 PMCID: PMC7506046 DOI: 10.3389/fendo.2020.00623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) from the central nervous system regulate the physiological responses of crustaceans. However, in crustaceans, our knowledge regarding GPCR expression patterns and phylogeny is limited. Thus, the present study aimed to analyze the eyestalk transcriptome of the oriental river prawn Macrobrachium nipponense in response to salinity acclimation. We obtained 162,250 unigenes after de novo assembly, and 1,392 and 1,409 differentially expressed genes were identified in the eyestalk of prawns in response to low and high salinity, respectively. We used combinatorial bioinformatic analyses to identify M. nipponense genes encoding GPCRs and neuropeptides. The mRNA levels of seven neuropeptides and one GPCR were validated in prawns in response to salinity acclimation using quantitative real-time reverse transcription polymerase chain reaction. A total of 148 GPCR-encoding transcripts belonging to three classes were identified, including 77 encoding GPCR-A proteins, 52 encoding GPCR-B proteins, and 19 encoding other GPCRs. The results increase our understanding of molecular basis of neural signaling in M. nipponense, which will promote further research into salinity acclimation of this crustacean.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- *Correspondence: Shengming Sun
| | - Mengru Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Fangyan Pan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Jianbin Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|