1
|
Su N, Zheng J, Zhang G, Guan J, Gao X, Cheng Z, Xu C, Xie D, Li Y. Molecular characterization of vascular endothelial growth factor b from spotted sea bass (Lateolabrax maculatus) and its potential roles in decreasing lipid deposition. Int J Biol Macromol 2024; 267:131507. [PMID: 38604419 DOI: 10.1016/j.ijbiomac.2024.131507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Vascular endothelial growth factor B (VEGFB), a member of the VEGF family, exhibits limited angiogenic activity in mammals but plays an unexpected role in targeting lipids to peripheral tissues. However, its role in lipid metabolism in fish is unknown. In this study, the vegfb gene was cloned and characterized from spotted sea bass (Lateolabrax maculatus). It encodes 254 amino acids and possesses the typical characteristics of the Vegfb family, demonstrating high homology with those from other vertebrate species. The vegfb gene exhibits the highest expression levels in the liver, followed by the gills, intestine, and adipose tissues in spotted sea bass. In vivo, high-lipid diets decreased vegfb expression and increased lipid deposition in liver of fish. In vitro, palmitic acid + oleic acid treatment or vegfb knockdown significantly increased TG and TC contents, promoting lipid droplet deposition in hepatocytes. Vegfb overexpression has the opposite effects, inhibiting lipid deposition and downregulating fatty acid transport and adipogenesis genes. In contrast, the vegfb knockdown significantly upregulated the expression levels of c/ebpα, plin2, and dgat1 (P < 0.05). These results demonstrate that Vegfb may play an important role in reducing lipid deposition by regulating fatty acid transport and adipogenesis in the hepatocytes of spotted sea bass.
Collapse
Affiliation(s)
- Ningning Su
- College of Marine Science, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Jun Zheng
- College of Marine Science, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Guanrong Zhang
- College of Marine Science, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Junfeng Guan
- College of Marine Science, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Xin Gao
- College of Marine Science, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Zhiyi Cheng
- College of Marine Science, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Chao Xu
- College of Marine Science, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Dizhi Xie
- College of Marine Science, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Yuanyou Li
- College of Marine Science, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
2
|
Taşbozan O, Erbaş C, Bayır M, Özdemir E, Arslan G, Bayır A. Fatty acid-binding protein genes in gilthead seabream: molecular cloning and nutritional regulation under low water temperatures. JOURNAL OF FISH BIOLOGY 2023; 102:816-828. [PMID: 36647813 DOI: 10.1111/jfb.15319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The molecular characteristics and tissue disruption of 10 fatty acid-binding protein (fabp) genes in gilthead seabream (Sparus aurata) were investigated, and their expression levels were found in the fish fed diets with different vegetable oil (VO) sources, which may explore the potential function of fabp genes in S. aurata. For this purpose, the open reading frames of fabp genes involved in the transport and ß-oxidation of fatty acids (FA) were molecularly cloned and characterized. S. aurata was then exposed to a two-staged feeding trial (the grow-out period following a wash-out period) at low water temperatures. In the grow-out period, the fish were fed diets containing 50% and 100% ratios of various VOs for 60 days, and in the wash-out period, the fish were fed a diet containing 100% fish oil (FO) for 30 days. It has been determined that (a) S. aurata and vertebrate fabp/FABP genes are orthologues; (b) spatio-temporal differences in tissue-specific patterns of fabp genes differ importantly; for instance, the difference between the highest and lowest values reaches 13 × 105 -fold in the fabp10a; and (c) VO-based diets upregulated fabp transcript levels in the liver and muscle with some exceptions, such as liver fabp11a and muscle fabp7a. Gene expressions of only the hepatic fabp7b and fabp10a genes were diminished at the end of the wash-out period. In this study, the authors provide further evidence that dietary FAs affect fabp mRNA expressions in S. aurata. This might be useful in the nutritional control of fabp genes to maintain lipid homeostasis in marine fish fed VO-based diets at low water temperatures.
Collapse
Affiliation(s)
- Oğuz Taşbozan
- Faculty of Fisheries, Department of Aquaculture, Çukurova University, Adana, Turkey
| | - Celal Erbaş
- Yumurtalık Vocational School, Çukurova University, Adana, Turkey
| | - Mehtap Bayır
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, Erzurum, Turkey
| | - Erdal Özdemir
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, Erzurum, Turkey
| | - Gökhan Arslan
- Faculty of Fisheries, Department of Fisheries and Fish Processing Technology, Atatürk University, Erzurum, Turkey
| | - Abdulkadir Bayır
- Faculty of Fisheries, Department of Aquaculture, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
Fei H, Cheng Y, Zhang H, Yu X, Yi S, Huang M, Yang S. Effect of Autolyzed Yarrowia lipolytica on the Growth Performance, Antioxidant Capacity, Intestinal Histology, Microbiota, and Transcriptome Profile of Juvenile Largemouth Bass (Micropterus salmoides). Int J Mol Sci 2022; 23:ijms231810780. [PMID: 36142687 PMCID: PMC9503160 DOI: 10.3390/ijms231810780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
The improper components of formulated feed can cause the intestinal dysbiosis of juvenile largemouth bass and further affect fish health. A 28 day feeding trial was conducted to investigate the effect of partially replacing fish meal (FM) with autolyzed Yarrowia lipolytica (YL) on juvenile largemouth bass (Micropterus salmoides). We considered four diets—control, YL25, YL50, and YL75—in which 0%, 25%, 50%, and 75% of the FM content, respectively, was replaced with YL. According to results, the weight gain rate (WGR) and specific growth rate (SGR) of the fish with the YL25 and YL50 diets were significantly higher than the WGR and SGR with the control diet, while the YL75 diet significantly reduced fish growth and antioxidant enzymes activities, and shortened the villus height in the intestinal mucosa. The 16S rRNA analysis of the intestinal microbiota showed that the relative abundance of Mycoplasma was significantly increased with the YL25 and YL50 diets, while the Enterobacteriacea content was increased with the YL75 diet. Moreover, our transcriptome analysis revealed that certain differentially expressed genes (DEGs) that are associated with growth, metabolism, and immunity were modulated by YL inclusion treatment. Dietary YL25 and YL50 significantly reduced the mRNA level of ERBB receptor feedback inhibitor 1 (errfi1) and dual-specificity phosphatases (dusp), while the expression of the suppressor of cytokine signaling 1 (socs1), the transporter associated with antigen processing 2 subunit type a (tap2a), and the major histocompatibility complex class I-related gene (MHC-I-l) were sharply increased with YL75 treatment. We determined that the optimum dose of dietary YL required for maximum growth without any adverse influence on intestinal health was 189.82 g/kg (with 31.63% of the fishmeal replaced by YL), while an excessive substitution of YL for fishmeal led to suppressed growth and antioxidant capacity, as well as intestinal damage for juvenile largemouth bass.
Collapse
Affiliation(s)
- Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yan Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huimin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Yu
- Zhejiang Development &Planning Institute, Hangzhou 310012, China
| | - Shunfa Yi
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: ; Tel.: +86-0571-8684-3199
| |
Collapse
|
4
|
Lei CX, Xie YJ, Li SJ, Jiang P, Du JX, Tian JJ. Fabp4 contributes toward regulating inflammatory gene expression and oxidative stress in Ctenopharyngodon idella. Comp Biochem Physiol B Biochem Mol Biol 2022; 259:110715. [PMID: 34999220 DOI: 10.1016/j.cbpb.2022.110715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Fatty acid-binding protein (Fabp)-4 is a member of the FABP family. Mammalian fabp4 has been demonstrated to involve in inflammation and immunity, whereas the related data of fish fabp4 remain limited. Therefore, we further investigated the effects of fabp4 on immunity in Ctenopharyngodon idella. The fabp4 sequence spanned 405 bp was cloned first, sharing high identity to fabp4 from other fish and mammals. Fabp4 expression was the highest in the adipose tissue, followed by the heart, muscle, and liver. In vivo, lipopolysaccharide (LPS) triggered the expression of fabp4, toll-like receptor (tlr)-22, interleukin (il)-1β, and tumor necrosis factor (tnf)-α in the kidney and spleen. In vitro, exposing C. idella CIK cells to LPS decreased their viability, and the expression of fabp4 was also increased by LPS. However, BMS309403, an inhibitor of FABP4, mitigated these effects. Furthermore, treating the cells with LPS or fabp4 overexpression plasmids resulted in reactive oxygen species (ROS) generation and upregulation of inflammatory genes expression, including tlr22, type-I interferon (ifn-1), interferon regulatory factor (irf)-7, tnfα, il-1β, and interferon-β promoter stimulator 1. These effects were ameliorated by preincubation with BMS309403. Moreover, incubating the cells with glutathione reduced the production of ROS and the expression of inflammatory genes that were evoked by LPS and plasmid treatments. These results showed that fabp4 acts as a pro-inflammatory molecule via elevating ROS levels, providing a novel understanding of the molecular regulation of innate immunity in teleosts.
Collapse
Affiliation(s)
- Cai-Xia Lei
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Yu-Jing Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Sheng-Jie Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China.
| | - Peng Jiang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Jin-Xing Du
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Jing-Jing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| |
Collapse
|
5
|
Mao H, Han B, Li H, Tao Y, Wu W. FABP4 knockdown suppresses inflammation, apoptosis and extracellular matrix degradation in IL-1β-induced chondrocytes by activating PPARγ to regulate the NF-κB signaling pathway. Mol Med Rep 2021; 24:855. [PMID: 34651666 PMCID: PMC8532115 DOI: 10.3892/mmr.2021.12495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 01/24/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease that can lead to severe joint pain and loss of function, seriously threatening the health and normal life of patients. At present, the pathogenesis of OA remains to be clarified. Recent studies have shown that fatty acid-binding protein 4 (FABP4) is increased in the plasma and synovial fluid of patients with OA. However, the effect of FABP4 on OA is unclear. The present study established IL-1β-induced ATDC5 cells with FABP4 knockdown. Next, cell viability was detected with Cell Counting Kit-8 assay. The content of inflammatory factors, prostaglandin E2 and glycosaminoglycan (GAG) was detected via ELISA. The levels of reactive oxygen species (ROS) and superoxide dismutase (SOD) in cells were detected by using ROS and SOD kits, respectively. TUNEL staining was used to detect the apoptosis level. Western blotting was used to detect the expression levels of proteins. The results revealed that FABP4 was upregulated in IL-1β-induced ATDC5 cells. Knockdown of FABP4 increased cell viability, reduced inflammatory damage, oxidative stress and apoptosis in IL-1β-induced ATDC5 cells. Following FABP4 knockdown, the expression of matrix metalloproteinases (MMP3, MMP9 and MMP13) of IL-1β-induced ATDC5 cells was reduced, and the expression of GAG was promoted. FABP4 knockdown also inhibited the expression of NF-κB p65 and enhanced peroxisome proliferator-activated receptor (PPAR)γ expression. However, the presence of PPARγ inhibitor blocked the aforementioned effects of FABP4 on IL-1β-induced ATDC5 cells. In conclusion, FABP4 knockdown suppressed the inflammation, oxidative stress, apoptosis and extracellular matrix degradation of IL-1β-induced chondrocytes by activating PPARγ to inhibit the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Huajie Mao
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Bin Han
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Hao Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yiqing Tao
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Weigang Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
6
|
PPARγ regulates fabp4 expression to increase DHA content in golden pompano ( Trachinotus ovatus) hepatocytes. Br J Nutr 2021; 127:3-11. [PMID: 33663633 DOI: 10.1017/s0007114521000775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-3 long-chain (≥C20) PUFA (LC-PUFA) are vital fatty acids for fish and humans. As a main source of n-3 LC-PUFA for human consumers, the n-3 LC-PUFA content of farmed fish is important. Previously, we identified fatty acid-binding protein (fabp)-4 as a candidate gene for regulating the n-3 LC-PUFA content. Herein, we further assessed the role of fabp4 in this process. First, a 2059 bp promoter sequence of fabp4 in Trachinotus ovatus was cloned and, using progressive deletion, determined -2006 bp to -1521 bp to be the core promoter sequence. The PPAR-γ binding sites were predicted to occur in this region. A luciferase reporter assay showed that the promoter activity of fabp4 decreased following mutation of the PPARγ binding site and that PPARγ increased the fabp4 promoter activity in a dose-dependent manner, implying that T. ovatus fabp4 is a target of PPARγ. The overexpression of fabp4 or PPARγ increased the DHA content in hepatocytes, whereas suppression of their expression diminished this effect, suggesting that both fabp4 and PPARγ play an active role in regulating DHA content. Moreover, the inhibition of fabp4 attenuated the increase in PPARγ-mediated DHA content, and the overexpression of fabp4 alleviated this effect. Collectively, our findings indicated that fabp4, which is controlled by PPARγ, plays an important role in DHA content regulation. The new regulation axis can be considered a promising novel target for increasing the n-3 LC-PUFA content in T. ovatus.
Collapse
|