1
|
Newham E, Gill PG, Benton MJ, Brewer P, Gostling NJ, Haberthür D, Jernvall J, Kankanpää T, Kallonen A, Navarro C, Pacureanu A, Richards K, Robson Brown K, Schneider P, Suhonen H, Tafforeau P, Williams K, Zeller-Plumhoff B, Corfe IJ. Reply to: Revisiting life history and morphological proxies for early mammaliaform metabolic rates. Nat Commun 2022; 13:5564. [PMID: 36151135 PMCID: PMC9508248 DOI: 10.1038/s41467-022-32716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Elis Newham
- School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| | - Pamela G Gill
- School of Earth Sciences, University of Bristol, Bristol, UK. .,Earth Sciences Department, Natural History Museum, London, UK.
| | | | - Philippa Brewer
- Earth Sciences Department, Natural History Museum, London, UK
| | - Neil J Gostling
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tuomas Kankanpää
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Aki Kallonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Charles Navarro
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | | | | - Kate Robson Brown
- Department of Anthropology and Archaeology, University of Bristol, Bristol, UK.,Department of Engineering Mathematics, University of Bristol, Bristol, UK
| | - Philipp Schneider
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.,High-Performance Vision Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Heikki Suhonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Katherine Williams
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.,School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum hereon GmbH, Geesthacht, Germany
| | - Ian J Corfe
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland. .,Geological Survey of Finland, Espoo, Finland.
| |
Collapse
|
2
|
Newham E, Gill PG, Corfe IJ. New tools suggest a middle Jurassic origin for mammalian endothermy: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time. Bioessays 2022; 44:e2100060. [PMID: 35170781 DOI: 10.1002/bies.202100060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022]
Abstract
We suggest that mammalian endothermy was established amongst Middle Jurassic crown mammals, through reviewing state-of-the-art fossil and living mammal studies. This is considerably later than the prevailing paradigm, and has important ramifications for the causes, pattern, and pace of physiological evolution amongst synapsids. Most hypotheses argue that selection for either enhanced aerobic activity, or thermoregulation was the primary driver for synapsid physiological evolution, based on a range of fossil characters that have been linked to endothermy. We argue that, rather than either alternative being the primary selective force for the entirety of endothermic evolution, these characters evolved quite independently through time, and across the mammal family tree, principally as a response to shifting environmental pressures and ecological opportunities. Our interpretations can be tested using closely linked proxies for both factors, derived from study of fossils of a range of Jurassic and Cretaceous mammaliaforms and early mammals.
Collapse
Affiliation(s)
- Elis Newham
- School of Engineering and Materials Science, Queen Mary University of London, London, UK.,Department of Palaeontology, Institute for Geosciences, University of Bonn, Bonn, Germany
| | - Pamela G Gill
- School of Earth Sciences, University of Bristol, Bristol, UK.,Earth Sciences Department, Natural History Museum, London, UK
| | - Ian J Corfe
- Jernvall Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Geological Survey of Finland, Espoo, Finland
| |
Collapse
|
3
|
Chen Z, Cao X, Lu Q, Zhou J, Wang Y, Wu Y, Mao Y, Xu H, Yang Z. circ01592 regulates unsaturated fatty acid metabolism through adsorbing miR-218 in bovine mammary epithelial cells. Food Funct 2021; 12:12047-12058. [PMID: 34761771 DOI: 10.1039/d1fo02797b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The composition of fatty acids plays a key role in regulating milk flavor and quality. Therefore, to improve the quality of milk, it is particularly important to study the regulatory mechanism of fatty acid metabolism in dairy cows. In this study, the expression profiles at non-lactation, peak-lactation, mid-lactation and late-lactation were constructed by high-throughput sequencing. Considering non-lactation as the control group and the other points as the experimental groups, the differentially expressed genes were screened. ELOVL5 was significantly upregulated and was selected for subsequent analyses. Bioinformatics prediction, a dual-luciferase assay, qPCR analysis and western blot analysis were used for verification. The results showed that ELOVL5 was a downstream target gene of miR-218 that regulated milk fat metabolism. A dual-luciferase assay and expression level analysis showed that circ01592 can directly bind to miR-218 and that overexpression of circ01592 (pcDNA-circ01592) significantly reduced the expression of miR-218 and enhanced the expression of ELOVL5, the target gene of miR-218 in BMECs. A functional study of BMECs showed that circ01592 promoted the synthesis of TAG and increased the content of UFA. The function of miR-218 was opposite to that of circ01592. Overall, the data showed that circ01592 promoted TAG synthesis and fatty acid composition by binding miR-218, alleviating the inhibitory effect of miR-218 on ELOVL5 expression. These mechanisms provide a new research approach and theoretical basis for improving milk quality.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jingpeng Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Huifen Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
What Are the Potential Roles of Nuclear Perlecan and Other Heparan Sulphate Proteoglycans in the Normal and Malignant Phenotype. Int J Mol Sci 2021; 22:ijms22094415. [PMID: 33922532 PMCID: PMC8122901 DOI: 10.3390/ijms22094415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.
Collapse
|