1
|
Liu W, Yin D, Li Z, Zhu X, Zhang S, Zhang P, Lin D, Hua Z, Cao Z, Zhang H, Zhang J, Ying C, Xu P, Dong G, Liu K. Comparative Blood Transcriptome Analysis of Semi-Natural and Controlled Environment Populations of Yangtze Finless Porpoise. Animals (Basel) 2024; 14:199. [PMID: 38254368 PMCID: PMC10812818 DOI: 10.3390/ani14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis) living in different environments display significant differences in behavior and physiology. To compare and analyze gene expression differences between an ex situ population and a controlled environment population of the Yangtze finless porpoise, we sequenced the transcriptome of blood tissues living in a semi-natural reserve and an artificial facility, respectively. We identified 6860 differentially expressed genes (DEGs), of which 6603 were up-regulated and 257 were down-regulated in the controlled environment vs ex situ comparison. GO and KEGG enrichment analysis showed that the up-regulated genes in the controlled environment population were significantly associated with glucose metabolism, amino acid metabolism, and the nervous system, while those up-regulated in the ex situ population were significantly associated with energy supply and biosynthesis. Further analysis showed that metabolic and hearing-related genes were significantly affected by changes in the environment, and key metabolic genes such as HK, PFK, IDH, and GLS and key hearing-related genes such as OTOA, OTOF, SLC38A1, and GABBR2 were identified. These results suggest that the controlled environment population may have enhanced glucose metabolic ability via activation of glycolysis/gluconeogenesis, the TCA cycle, and inositol phosphate metabolism, while the ex situ population may meet higher energy requirements via enhancement of the amino acid metabolism of the liver and muscle and oxidative phosphorylation. Additionally, the acoustic behavior and auditory-related genes of Yangtze finless porpoise may show responsive changes and differential expression under different environment conditions, and thus the auditory sensitivity may also show corresponding adaptive characteristics. This study provides a new perspective for further exploration of the responsive changes of the two populations to various environments and provides a theoretical reference for further improvements in conservation practices for the Yangtze finless porpoise.
Collapse
Affiliation(s)
- Wang Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Denghua Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
| | - Zhanwei Li
- Zhuhai Chimelong Investment & Development Co., Ltd., Zhuhai 519000, China; (Z.L.); (P.Z.)
| | - Xiaoyan Zhu
- Anqing Aquatic Technology Promotion Center Station, Anqing 246000, China; (X.Z.); (S.Z.)
| | - Sigang Zhang
- Anqing Aquatic Technology Promotion Center Station, Anqing 246000, China; (X.Z.); (S.Z.)
| | - Peng Zhang
- Zhuhai Chimelong Investment & Development Co., Ltd., Zhuhai 519000, China; (Z.L.); (P.Z.)
| | - Danqing Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
| | - Zhong Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
| | - Zhichen Cao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Z.C.); (H.Z.)
| | - Han Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Z.C.); (H.Z.)
| | - Jialu Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
| | - Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Guixin Dong
- Guangdong South China Rare Wild Animal Species Conservation Center, Zhuhai 519031, China
| | - Kai Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.L.); (D.Y.); (D.L.); (Z.H.); (J.Z.); (P.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Z.C.); (H.Z.)
| |
Collapse
|
2
|
Yao Y, Zhao W, Xiang G, Lv R, Dong Y, Yan H, Li M. Bamboo Plant Part Preference Affects the Nutrients Digestibility and Intestinal Microbiota of Geriatric Giant Pandas. Animals (Basel) 2023; 13:ani13050844. [PMID: 36899701 PMCID: PMC10000146 DOI: 10.3390/ani13050844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Bamboo part preference plays a critical role in influencing the nutrient utilization and gastrointestinal microbiota composition of captive giant pandas. However, the effects of bamboo part consumption on the nutrient digestibility and gut microbiome of geriatric giant pandas remain unknown. A total of 11 adult and 11 aged captive giant pandas were provided with bamboo shoots or bamboo leaves in the respective single-bamboo-part consumption period, and the nutrient digestibility and fecal microbiota of both adult and aged giant pandas in each period were evaluated. Bamboo shoot ingestion increased the crude protein digestibility and decreased the crude fiber digestibility of both age groups. The fecal microbiome of the bamboo shoot-fed giant pandas exhibited greater alpha diversity indices and significantly different beta diversity index than the bamboo leaf-fed counterparts regardless of age. Bamboo shoot feeding significantly changed the relative abundance of predominant taxa at both phylum and genus levels in adult and geriatric giant pandas. Bamboo shoot-enriched genera were positively correlated with crude protein digestibility and negatively correlated with crude fiber digestibility. Taken together, these results suggest that bamboo part consumption dominates over age in affecting the nutrient digestibility and gut microbiota composition of giant pandas.
Collapse
Affiliation(s)
- Ying Yao
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Wenjia Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Guilin Xiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruiqing Lv
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Yanpeng Dong
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Correspondence: (H.Y.); (M.L.)
| | - Mingxi Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Correspondence: (H.Y.); (M.L.)
| |
Collapse
|
3
|
Zhang X, Ying C, Jiang M, Lin D, You L, Yin D, Zhang J, Liu K, Xu P. The bacteria of Yangtze finless porpoise ( Neophocaena asiaeorientalis asiaeorientalis) are site-specific and distinct from freshwater environment. Front Microbiol 2022; 13:1006251. [PMID: 36605503 PMCID: PMC9808046 DOI: 10.3389/fmicb.2022.1006251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria play an essential role in the health of marine mammals, and the bacteria of marine mammals are widely concerned, but less is known about freshwater mammals. In this study, we investigated the bacteria of various body sites of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) and analyzed their association with freshwater environmental bacteria. The bacterial community and function of Yangtze finless porpoise showed apparent site-specificity. Various body sites have distinct differences in bacteria and have their dominant bacteria. Romboutsia, Plesiomonas, Actinobacillus, Candidatus Arthromitus dominated in the intestine (fecal and rectal samples). Fusobacterium, Streptococcus, and Acinetobacter dominated in the oral. The dominant genera in the blowhole include Suttonella, Psychrobacter, and two uncultured genera. Psychrobacter, Flavobacterium, and Acinetobacter were dominant in the skin. The alpha diversity of intestinal (fecal and rectal) bacteria was the lowest, while that of skin was the highest. The oral and skin bacteria of Yangtze finless porpoise significantly differed between the natural and semi-natural conditions, but no sex difference was observed. A clear boundary was found between the animal and the freshwater environmental bacteria. Even the skin bacteria, which are more affected by the environment, are significantly different from the environmental bacteria and harbor indigenous bacteria. Our results provide a comprehensive preliminary exploration of the bacteria of Yangtze finless porpoise and its association with bacteria in the freshwater environment.
Collapse
Affiliation(s)
- Xizhao Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Min Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Danqing Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Lei You
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Denghua Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jialu Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Kai Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China,*Correspondence: Kai Liu,
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China,Pao Xu,
| |
Collapse
|
4
|
Yin D, Chen C, Lin D, Zhang J, Ying C, Liu Y, Liu W, Cao Z, Zhao C, Wang C, Liang L, Xu P, Jian J, Liu K. Gapless genome assembly of East Asian finless porpoise. Sci Data 2022; 9:765. [PMID: 36513679 PMCID: PMC9747978 DOI: 10.1038/s41597-022-01868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, conservation efforts have increased for rare and endangered aquatic wildlife, especially cetaceans. However, the East Asian finless porpoise (Neophocaena asiaeorientalis sunameri), which has a wide distribution in China, has received far less attention and protection. As an endangered small cetacean, the lack of a chromosomal-level reference for the East Asian finless porpoise limits our understanding of its population genetics and conservation biology. To address this issue, we combined PacBio HiFi long reads and Hi-C sequencing data to generate a gapless genome of the East Asian finless porpoise that is approximately 2.5 Gb in size over its 21 autosomes and two sex chromosomes (X and Y). A total of 22,814 protein-coding genes were predicted where ~97.31% were functionally annotated. This high-quality genome assembly of East Asian finless porpoise will not only provide new resources for the comparative genomics of cetaceans and conservation biology of threatened species, but also lay a foundation for more speciation, ecology, and evolutionary studies. Measurement(s) Neophocaena asiaeorientalis sunameri • Gapless genome assembly • sequence annotation Technology Type(s) MGISEQ. 2000 • PacBio HiFi Sequencing • Hi-C Sample Characteristic - Organism Neophocaena asiaeorientalis sunameri Sample Characteristic - Environment seawater Sample Characteristic - Location Yellow Sea near Lianyungang City, Jiangsu Province, China.
Collapse
Affiliation(s)
- Denghua Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Chunhai Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Danqing Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jialu Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yan Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Zhichen Cao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Chenxi Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Chenhe Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Liping Liang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Kai Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
Blood Transcriptome Analysis Reveals Gene Expression Differences between Yangtze Finless Porpoises from Two Habitats: Natural and Ex Situ Protected Waters. FISHES 2022. [DOI: 10.3390/fishes7030096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP) is a critically endangered small odontocete species, mainly distributed in the middle and lower reaches of the Yangtze River, Poyang Lake, and Dongting Lake. Under the influence of human activities, many factors are threatening the survival and reproduction of YFPs in their natural habitat. Ex situ conservation is of great significance to strengthen the rescuing conservation of YFPs by providing suitable alternative habitats and promoting the reproduction and growth of the ex situ population. To reveal the differences in gene expression of YFPs in natural and ex situ protected waters, and to investigate the effects of environmental factors on YFPs and their mechanisms, we performed transcriptome sequencing for blood tissues of YFPs collected from natural waters and ex situ protected waters. Using RNA-seq we identified 4613 differentially expressed genes (DEGs), of which 4485 were up-regulated and 128 were down-regulated in the natural population. GO analysis showed that DEGs were significantly enriched in entries related to binding, catalytic activity, and biological regulation; KEGG analysis showed that DEGs were enriched mainly in signal transduction, endocrine system, immune system, and sensory system-related pathways. Further analysis revealed that water pollution in natural waters may affect the hormone secretion of YFPs by altering the expression pattern of endocrine genes, thus interfering with normal endocrine activities; noise pollution may induce oxidative stress and inflammatory responses in YFPs, thus impairing the auditory function of YFPs. This study provides a new perspective for further research on the effect of habitat conditions on the YFPs and suggests that improving the habitat environment may help in the conservation of YFPs.
Collapse
|
6
|
Ou Z, Zhu L, Huang C, Ma C, Kong L, Lin X, Gao X, Huang L, Wen L, Liang Z, Yuan Z, Wu J, Yi J. Betulinic acid attenuates cyclophosphamide-induced intestinal mucosa injury by inhibiting the NF-κB/MAPK signalling pathways and activating the Nrf2 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112746. [PMID: 34482064 DOI: 10.1016/j.ecoenv.2021.112746] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Betulinic acid (BA), a pentacyclic triterpenoid, has been associated with several biological effects, such as antioxidant, anti-inflammatory and antiviral activities. Previous studies have demonstrated that BA has the ability to alleviate intestinal mucosal damage, however, the potential mechanism associated with the effect has not been reported. This study aimed to investigate the possible protective mechanism of BA against cyclophosphamide (CYP)-induced intestinal mucosal damage. Here, we found that BA pretreatment prevented intestinal mucosal barrier dysfuction from CYP-challenged mice by repairing the intestinal physical, chemical, and immune barriers. Moreover, BA treatment suppressed the CYP-induced oxidative stress by activating the nuclear factor erythroid 2 [NF-E2]-related factor (Nrf2) pathway blocked reactive oxygen species (ROS) accumulation. In addition, BA inhibited CYP-triggered intestinal inflammation through down-regulating the nuclear transcription factor kappa B (NF-κB)/mitogen-activating protein kinase (MAPK) pathways. Furthermore, BA pretreatment reduced intestinal apoptosis by blocking ROS-activated mitochondrial apoptotic pathway. Overall, the current study demonstrated the protective effect of BA against CYP-caused intestinal mucosal damage by regulating the Nrf2 and NF-κB/MAPK signalling pathways, which may provide new therapeutic targets to attenuate intestinal impairment and maintain intestinal health.
Collapse
Affiliation(s)
- Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chenglong Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xing Lin
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xinyu Gao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Changsha 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|