1
|
Yang J, Ru X, Huang Y, Wu J, Yang T, Chen P, Li J, Zhu K, Zhu C. Transcriptomic Analysis Provides New Insights into Oocyte Growth and Maturation in Greater Amberjack ( Seriola dumerili). Animals (Basel) 2025; 15:333. [PMID: 39943103 PMCID: PMC11815777 DOI: 10.3390/ani15030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The greater amberjack (Seriola dumerili) is an emerging marine fish that is increasingly favored in aquaculture. Currently, there are few studies on the development and regulation of greater amberjack ovaries. In this study, the ovary transcriptome profiles of greater amberjack at three different stages (stage II, III, and IV) were performed, and identified the genes and pathways that may play significant roles in the processes of follicle growth and maturation. A total of 6597, and 1061 differentially expressed genes (DEGs) were detected in FII vs. FIII, FIII vs. FIV, and FII vs. FIV stages, respectively. GO and KEGG enrichment analyses revealed that these DEGS are primarily involved in steroid hormone biosynthesis (e.g., cyp11a1, cyp17a1, cyp19a1a, hsd3b1, esr1), lipid metabolism (e.g., plpp3, lpl, pld1, and fabp10a), and meiotic arrest and resumption (e.g., pgr, arb, ccnd2, adcy2, adcy9, myl9, calm1). Additionally, several signaling pathways involved in ovarian development have been identified, including the PI3K-Akt, Wnt, TGF-beta, GnRH, and immune-related signaling pathways. qPCR results of nine representative genes related to steroid hormone synthesis and cell growth verified the reliability of the generated RNA-seq data. This research contributes to our comprehension of the molecular processes underlying ovarian growth and maturation in marine fishes and provides a theoretical basis for the investigation of functional genes associated with oogenesis in greater amberjack.
Collapse
Affiliation(s)
- Jiahui Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College of Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (Y.H.); (T.Y.); (P.C.); (J.L.); (K.Z.)
| | - Xiaoying Ru
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China;
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College of Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (Y.H.); (T.Y.); (P.C.); (J.L.); (K.Z.)
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China;
| | - Jinhui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China;
| | - Tonglin Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College of Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (Y.H.); (T.Y.); (P.C.); (J.L.); (K.Z.)
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China;
| | - Peipei Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College of Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (Y.H.); (T.Y.); (P.C.); (J.L.); (K.Z.)
| | - Jin Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College of Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (Y.H.); (T.Y.); (P.C.); (J.L.); (K.Z.)
| | - Kunfeng Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College of Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (Y.H.); (T.Y.); (P.C.); (J.L.); (K.Z.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College of Guangdong Ocean University, Zhanjiang 524088, China; (J.Y.); (Y.H.); (T.Y.); (P.C.); (J.L.); (K.Z.)
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China;
| |
Collapse
|
2
|
Liu S, Lian Y, Song Y, Chen Q, Huang J. De Novo Assembly, Characterization and Comparative Transcriptome Analysis of the Gonads of Jade Perch ( Scortum barcoo). Animals (Basel) 2023; 13:2254. [PMID: 37508032 PMCID: PMC10376888 DOI: 10.3390/ani13142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the high meat yield and rich nutritional content, jade perch (Scortum barcoo) has become an important commercial aquaculture species in China. Jade perch has a slow growth rate, taking 3-4 years to reach sexual maturity, and has almost no difference in body size between males and females. However, the study of its gonad development and reproduction regulation is still blank, which limited the yield increase. Herein, the gonad transcriptomes of juvenile males and females of S. barcoo were identified for the first time. A total of 107,060 unigenes were successfully annotated. By comparing male and female gonad transcriptomes, a total of 23,849 differentially expressed genes (DEGs) were identified, of which 9517 were downregulated, and 14,332 were upregulated in the testis. In addition, a large number of DEGs involved in sex differentiation, gonadal development and differentiation and gametogenesis were identified, and the differential expression patterns of some genes were further verified using real-time fluorescence quantitative PCR. The results of this study will provide a valuable resource for further studies on sex determination and gonadal development of S. barcoo.
Collapse
Affiliation(s)
- Shiyan Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingying Lian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yikun Song
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qinghua Chen
- South China Institute of Environmental Science, MEE, Guangzhou 510610, China
| | - Jianrong Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Peng Y, Shi H, Liu Y, Huang Y, Zheng R, Jiang D, Jiang M, Zhu C, Li G. RNA Sequencing Analysis Reveals Divergent Adaptive Response to Hypo- and Hyper-Salinity in Greater Amberjack ( Seriola dumerili) Juveniles. Animals (Basel) 2022; 12:327. [PMID: 35158652 PMCID: PMC8833429 DOI: 10.3390/ani12030327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Salinity significantly affects physiological and metabolic activities, breeding, development, survival, and growth of marine fish. The greater amberjack (Seriola dumerili) is a fast-growing species that has immensely contributed to global aquaculture diversification. However, the tolerance, adaptation, and molecular responses of greater amberjack to salinity are unclear. This study reared greater amberjack juveniles under different salinity stresses (40, 30, 20, and 10 ppt) for 30 days to assess their tolerance, adaptation, and molecular responses to salinity. RNA sequencing analysis of gill tissue was used to identify genes and biological processes involved in greater amberjack response to salinity stress at 40, 30, and 20 ppt. Eighteen differentially expressed genes (DEGs) (nine upregulated and nine downregulated) were identified in the 40 vs. 30 ppt group. Moreover, 417 DEGs (205 up-regulated and 212 down-regulated) were identified in the 20 vs. 30 ppt group. qPCR and transcriptomic analysis indicated that salinity stress affected the expression of genes involved in steroid biosynthesis (ebp, sqle, lss, dhcr7, dhcr24, and cyp51a1), lipid metabolism (msmo1, nsdhl, ogdh, and edar), ion transporters (slc25a48, slc37a4, slc44a4, and apq4), and immune response (wnt4 and tlr5). Furthermore, KEGG pathway enrichment analysis showed that the DEGs were enriched in steroid biosynthesis, lipids metabolism, cytokine-cytokine receptor interaction, tryptophan metabolism, and insulin signaling pathway. Therefore, this study provides insights into the molecular mechanisms of marine fish adaptation to salinity.
Collapse
Affiliation(s)
- Yuhao Peng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Yuqi Liu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Renchi Zheng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Mouyan Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| |
Collapse
|
4
|
Shi H, Ru X, Pan S, Jiang D, Huang Y, Zhu C, Li G. Transcriptomic analysis of pituitary in female and male spotted scat (Scatophagus argus) after 17β-estradiol injection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 41:100949. [PMID: 34942522 DOI: 10.1016/j.cbd.2021.100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Spotted scat (Scatophagus argus) is a popular species of marine fish cultured in China. It shows normal sexual growth dimorphism. Female spotted scat grows quicker and bigger than males. Growth and reproduction are the most important traits in aquaculture. In vertebrates, the pituitary gland occupies an important position in the growth and reproduction axis. Estrogen is involved in regulating growth and reproduction in the pituitary gland in an endocrine fashion. Transcriptome sequencing of the pituitary was performed in female and male fish at 6 h after 17β-estradiol injection (4.0 μg E2/g body weight, BW). Compared with the pituitary of female and male groups, 144 and 64 genes [|log2(fold change)| ≥ 1.0 and false discovery rate (FDR) < 0.05] were significantly differentially expressed in E2-injected females and males, respectively (p < 0.05). Of these, 59 and 48 were up-regulated, and 85 and 16 were down-regulated. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analyses, DEGs were involved in signal pathways, such as growth, reproduction, oocyte meiosis and steroid biosynthesis. Of these, estrogen affected the expression of some sex steroid synthesis and receptor genes in the pituitary gland through feedback, such as hsd17b7, pgr and cyp19a1b, regulating the reproductive activities. Besides, some growth-related genes, such as gap43, junbb, mstn2 and insm1a responded to estrogen. E2 might affect the expression level of gh mRNA by regulating the expression levels of growth-related genes. Our results provide a theoretical basis for studying the molecular mechanism of growth and reproduction regulation at the pituitary level of spotted scat responded to E2.
Collapse
Affiliation(s)
- Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoying Ru
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang 524088, China
| | - Shuhui Pan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Zhou H, Sun Y, Li X, Zhou Z, Ma K, Guo W, Liang Y, Xie X, Zhang J, Wang Q, Liu Y. A Transcriptomic Analysis of Gonads from the Low-Temperature-Induced Masculinization of Takifugu rubripes. Animals (Basel) 2021; 11:ani11123419. [PMID: 34944196 PMCID: PMC8697924 DOI: 10.3390/ani11123419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Our study analyzed the differentiation of transcriptomes in normal and sex-reverse Takifugu rubripes, and screened out 13 differentially expressed genes related to sex differentiation. This is the first report on the gonadal transcriptome of pseudo-males in Takifugu rubripes. Our results provide an important contribution to the molecular mechanism of masculinization in a cultured fish subject to low-temperature treatment. Abstract The phenotypic sex of fish is usually plastic. Low-temperature treatment induces the masculinization of Takifugu rubripes, resulting in pseudo-males (PM) with the physiological sex of a male (M) and genetic sex of a female (F). For a comparison of gonadal transcriptomes, we collected gonads from three groups of T. rubripes (F, M, and PM) for high-throughput transcriptome sequencing. The results provided 467,640,218 raw reads (70.15 Gb) and a total of 436,151,088 clean reads (65.43 Gb), with an average length of 150 bp. Only 79 differentially expressed genes (DEGs) were identified between F and PM, whereas 12,041 and 11,528 DEGs were identified between F and M, and PM and M, respectively. According to the functional annotation of DEGs, 13 DEGs related to gonadal development were screened (LOC101066759, dgat1, limk1, fbxl3, col6a3, fgfr3, dusp22b, svil, abhd17b, srgap3, tmem88b, bud4, and mustn10) which might participate in formating PM. A quantitative PCR of the DEGs confirmed the reliability of the RNA-seq. Our results provide an important contribution to the genome sequence resources for T. rubripes and insight into the molecular mechanism of masculinization in a cultured fish subject to low-temperature treatment.
Collapse
Affiliation(s)
- He Zhou
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Yuqing Sun
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Xin Li
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Ziyu Zhou
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Kexin Ma
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Wenxuan Guo
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Yuting Liang
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Xingyi Xie
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Jingxian Zhang
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Key Laboratory of Marine Bio-Resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian 116023, China
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- Correspondence: (Q.W.); (Y.L.)
| | - Yang Liu
- Key Laboratory of Mariculture, Agriculture Ministry, PRC, Dalian Ocean University, Dalian 116023, China; (H.Z.); (Y.S.); (X.L.); (Z.Z.); (K.M.); (W.G.); (Y.L.); (X.X.); (J.Z.)
- Correspondence: (Q.W.); (Y.L.)
| |
Collapse
|