1
|
Chauhan V, Rai U, Tripathy M, Kumar S. Neuropeptide Y at the crossroads of male reproductive functions in a seasonally breeding reptile, Hemidactylus flaviviridis. Comp Biochem Physiol A Mol Integr Physiol 2025; 303:111826. [PMID: 39971152 DOI: 10.1016/j.cbpa.2025.111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Neuropeptide Y (NPY) is known to be a key regulator of reproductive functions across vertebrates. Its role in the modulation of gonadotropin releasing hormone (GnRH) has been extensively explored in mammals and fishes. However, no such report exists in aves, amphibians, or reptiles. Hence, the present study aimed to develop an insight into reproductive phase-dependent expression and role of NPY in the diencephalon region of male wall lizards. Expression of ligand, npy, and its receptor, npyr varied across the annual reproductive cycle of Hemidactylus flaviviridis with the highest expression of both observed during recrudescence. Further, the diencephalon region of recrudescent wall lizards treated with NPY demonstrated an increased mRNA level of gnrh and its receptor, gnrhr. In addition, the current study also elucidates hormonal regulation of diencephalonic npy and npyr wherein neuropeptides like kisspeptin and substance P, the gonadotropin, FSH, as well as sex steroids, dihydrotestosterone (DHT) and 17β-estradiol (E2) inhibited npy and npyr expression in the diencephalon region of wall lizards. With regard to adipokines, leptin stimulated while nesfatin-1 inhibited diencephalonic npy and npyr expression. In conclusion, the current study is the first to present a comprehensive picture of reproductive phase-specific expression pattern, role, and hormonal regulation of neuropeptide Y in the diencephalon region of the male wall lizard, H. flaviviridis.
Collapse
Affiliation(s)
- Vishesh Chauhan
- Zakir Husain Delhi College, University of Delhi, Delhi 110002, India; Department of Zoology, University of Delhi, Delhi 110007, India
| | - Umesh Rai
- University of Jammu, Jammu and Kashmir, 180006, India
| | - Mamta Tripathy
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Sunil Kumar
- Zakir Husain Delhi College, University of Delhi, Delhi 110002, India.
| |
Collapse
|
2
|
Ibrahim RE, Shaalan M, ElHady M, Ghetas HA, Elsayed FI, Younis EM, Abdelwarith AA, Badran MF, Davies SJ, Rahman ANA. Potential role of dietary white poplar (Populus alba L.) in stimulating growth, digestion, and antioxidant/immune status of Nile tilapia (Oreochromis niloticus). BMC Vet Res 2025; 21:51. [PMID: 39910604 DOI: 10.1186/s12917-025-04499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
The potential use of feed supplements as immune-stimulant and growth-promoting agents in fish diets has drawn much attention. The current research investigated the effects of feeding Nile tilapia (Oreochromis niloticus) on white poplar (Populus alba L.) (WP) leaves powder as a dietary supplement on the growth, digestive functions, immune, and oxidant-antioxidant parameters. In addition, the fish resistance against the Aeromonas sobria (A. sobria) challenge was investigated. For 60 days, fish (n = 160; 34.61 ± 0.16 g) were divided equally into four groups, each had four replicates. Fish were fed on four isonitrogenous and isolipidic diets supplemented with varying levels of WP; 0 g/kg (WP0, crude protein (CP) = 37.18%; crude lipid (CL) = 9.98%), 2 g/kg (WP2, CP = 37.22%; CL = 9.56%), 4 g/kg (WP4, CP = 36.95%; CL = 9.47%), and 6 g/kg (WP6, CP = 36.88%; CL = 9.33%), where WP0 was the control diet. The results revealed that WP diets substantially boosted the growth (final body weight, weight gain, and specific growth rate) with an improvement of feed conversion ratio of Nile tilapia in a level-dependent manner with the WP6 group attaining the best outcomes. WP diets improved the amylase (4-6 g/kg level) and lipase (2-6 g/kg level) activity and the intestinal morphometric measures (2-6 g/kg level), where the WP6 group recorded the highest values. WP diets increased the growth hormone (2-6 g/kg level) and reduced leptin hormone and glucose levels (2-6 g/kg level). WP diets boosted the immune-antioxidant indices (total protein, albumin, globulin, complement 3, lysozyme, nitric oxide, total antioxidant capacity, glutathione peroxidase, and catalase) in a level-dependent manner and the WP6 group attained the highest values. All experimental groups exhibited 100% survival at the end of the feeding trial. During the A. sobria challenge, the survival of fish was improved in a level-dependent manner (2-6 g/kg) (80%, 85%, 95%, respectively) compared to the control (70%), where the WP6 group recorded the highest survival. Noteworthy, WP diets especially at a level of 6 g/kg can be used as a feed supplement for improving the health, growth, immune-antioxidant functions, and disease resistance of Nile tilapia.
Collapse
Affiliation(s)
- Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava, Slovakia.
| | - Mohamed ElHady
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Hanan A Ghetas
- Department of Aquatic Animals Medicine and Management, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Egypt
| | - Faten I Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed F Badran
- Department of Aquatic Hatchery Production, Fish Farming and Technology Institute, Suez Canal University, Ismailia, 41522, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Ryan Institute, College of Science and Engineering, Carna Research Station, University of Galway, Galway, H91V8Y1, Ireland
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
3
|
Yang J, Wang Y, Wang G, Guo Z, Li X, Lu J, Tu H, Li S, Wan J, Guan G, Chen L. Leptin A deficiency affecting the mitochondrial dynamics of aged oocytes in medaka (Oryzias latipes). Mol Cell Endocrinol 2024; 593:112345. [PMID: 39153543 DOI: 10.1016/j.mce.2024.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Mitochondrial dysfunction and metabolic disorder have been associated to age-related subfertility, however, the precise molecular mechanism controlling the development of fertile oocytes in aging females remains elusive. Leptin plays an important role in the maintenance of energy homeostasis, as both excessive or insufficient levels can affect the body weight and fertility of mice. Here, we report that leptin A deficiency affects growth and shortens reproductive lifespan by reducing fertility in medaka (Oryzias latipes). Targeted disruption of lepa (lepa-/-) females reduced their egg laying and fertility compared to normal 3-month-old females (lepa+/+ sexual maturity), with symptoms worsening progressively at the age of 6 months and beyond. Transcriptomic analysis showed that differentially expressed genes involved in metabolic and mitochondrial pathways were significantly altered in lepa-/- ovaries compared with the normal ovaries at over 6 months old. The expression levels of the autophagy-promoting genes ulk1a, atg7 and atg12 were significantly differentiated between normal and lepa-/- ovaries, which were further confirmed by quantitative polymerase chain reaction analysis, indicating abnormal autophagy activation and mitochondrial dysfunction in oocyte development lacking lepa. Transmission electron microscopy observations further confirmed these mitochondrial disorders in lepa-deficient oocytes. In summary, these research findings provide novel insights into how leptin influences female fertility through mitochondrial-mediated oocyte development.
Collapse
Affiliation(s)
- Jihui Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Ying Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Guangxing Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Zhenhua Guo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Xinwen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Jigang Lu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Huaming Tu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Shilin Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Jinming Wan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Guijun Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China.
| | - Liangbiao Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China.
| |
Collapse
|
4
|
Liu Z, Xie W, Li H, Liu X, Lu Y, Lu B, Deng Z, Li Y. Novel perspectives on leptin in osteoarthritis: Focus on aging. Genes Dis 2024; 11:101159. [PMID: 39229323 PMCID: PMC11369483 DOI: 10.1016/j.gendis.2023.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration, subchondral sclerosis, synovitis, and osteophyte formation. OA is associated with disability and impaired quality of life, particularly among the elderly. Leptin, a 16-kD non-glycosylated protein encoded by the obese gene, is produced on a systemic and local basis in adipose tissue and the infrapatellar fat pad located in the knee. The metabolic mechanisms employed by leptin in OA development have been widely studied, with attention being paid to aging as a corroborative risk factor for OA. Hence, in this review, we have attempted to establish a potential link between leptin and OA, by focusing on aging-associated mechanisms and proposing leptin as a potential diagnostic and therapeutic target in aging-related mechanisms of OA that may provide fruitful guidance and emphasis for future research.
Collapse
Affiliation(s)
- Zimo Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xu Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
5
|
Wu J, Zhuang W, Lu K, Zhang L, Wang Y, Chai F, Liang XF. Study on the Function of Leptin Nutrient Acquisition and Energy Metabolism of Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:11647. [PMID: 39519205 PMCID: PMC11546987 DOI: 10.3390/ijms252111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Leptin plays an indispensable role in energy homeostasis, and its involvement in metabolic activities has been extensively explored in fish. We generated mutant lines of leptina (-5 bp) and leptinb (+8 bp) in zebrafish using CRISPR/Cas9 technology to explore the metabolic characteristics of lepa and lepb mutant zebrafish in response to high glucose nutritional stress induced by high levels of carbohydrates. The results were as follows: the body weight and food intake of adult zebrafish of the two mutant species were increased; the visceral fat accumulation, whole-body crude lipid, and crude protein contents of lepb-/- were increased; and the visceral fat accumulation and crude lipid in lepa-/- zebrafish were decreased. The blood glucose levels of the two mutant zebrafish were increased, the mRNA expression levels of glycolytic genes pk and gck were decreased in the two mutant zebrafish, and there were differences between lepa-/- and lepb-/- zebrafish. The expressions of glycogen synthesis and decomposition genes were inhibited and promoted, respectively. The expression of adipose synthesis genes in the liver and muscle was stimulated in lepb-/- zebrafish but suppressed in lepa-/- zebrafish. Lipolysis and oxidation genes were also stimulated in lepa-/- zebrafish livers, while the livers of lepb-/- zebrafish were stimulated but muscle was inhibited. In conclusion, the results indicate that lepa plays a major role in glucose metabolism, which is conducive to promoting glucose utilization and lipogenesis, while lepb mainly promotes lipolysis and oxidation, regulates protein generation, and plays a minor role in glucose metabolism.
Collapse
Affiliation(s)
- Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Wuyuan Zhuang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Lixin Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yuye Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Farui Chai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (W.Z.); (K.L.); (L.Z.); (Y.W.); (F.C.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
6
|
Mélo RMF, Barbosa RS, Ozório VL, Oliveira GM, Horita SIM, Henriques-Pons A, Araújo-Jorge TC, Fragoso VMS. Influence of leptin and its receptors on individuals under chronic social stress behavior. Front Endocrinol (Lausanne) 2024; 15:1281135. [PMID: 38362276 PMCID: PMC10867138 DOI: 10.3389/fendo.2024.1281135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Stress is the body's physiological reaction to a dangerous or threatening situation, leading to a state of alertness. This reaction is necessary for developing an effective adaptive response to stress and maintaining the body's homeostasis. Chronic stress, caused mainly by social stress, is what primarily affects the world's population. In the last decades, the emergence of psychological disorders in humans has become more frequent, and one of the symptoms that can be observed is aggressiveness. In the brain, stress can cause neuronal circuit alterations related to the action of hormones in the central nervous system. Leptin, for example, is a hormone capable of acting in brain regions and neuronal circuits important for behavioral and emotional regulation. This study investigated the correlation between chronic social stress, neuroendocrine disorders, and individual behavioral changes. Then, leptin and its receptors' anatomical distribution were evaluated in the brains of mice subjected to a protocol of chronic social stress. The model of spontaneous aggression (MSA) is based on grouping young mice and posterior regrouping of the same animals as adults. According to the regrouping social stress, we categorized the mice into i) harmonic, ii) attacked, and iii) aggressive animals. For leptin hormone evaluation, we quantified plasma and brain concentrations by ELISA and evaluated its receptor and isoform expression by western blotting. Moreover, we verified whether stress or changes in leptin levels interfered with the animal's body weight. Only attacked animals showed reduced plasma leptin concentration and weight gain, besides a higher expression of the high-molecular-weight leptin receptor in the amygdala and the low-molecular-weight receptor in the hippocampal region. Aggressive animals showed a reduction in the cerebral concentration of leptin in the hippocampus and a reduced high-and low-molecular-weight leptin receptor expression in the amygdala. The harmonic animals showed a reduction in the cerebral concentration of leptin in the pituitary and a reduced expression of the high-molecular-weight leptin receptor in the amygdala. We then suggest that leptin and its receptors' expression in plasma and specific brain areas are involved in how individuals react in stressful situations, such as regrouping stress in MSA.
Collapse
Affiliation(s)
- Renata M. F. Mélo
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Rafaela S. Barbosa
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Victória L. Ozório
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Gabriel M. Oliveira
- Laboratory of Cell Biology, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Samuel I. M. Horita
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- Laboratory on Thymus Research, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Tânia C. Araújo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Viviane M. S. Fragoso
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Li WX, Cai LT, Huang YP, Huang YQ, Pan SH, Liu ZL, Ndandala CB, Shi G, Deng SP, Shi HJ, Li GL, Jiang DN. Sequence identification and expression characterization of leptin in the spotted scat, Scatophagus argus. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110882. [PMID: 37562672 DOI: 10.1016/j.cbpb.2023.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Scatophagus argus is an important marine culture fish in South and South-East Asia, including Southeast coastal areas of China. Artificial propagation technology for S. argus is not optimum; thus further studies on its reproduction biology are required. Although previous studies have shown that leptin (Lep) can regulate fish reproduction, the role of lep genes in S. argus is unknown. Herein, in silico analysis showed that S. argus has two lep genes (lepa and lepb). Protein 3D-structure prediction showed that Lepa has four α-helices (similar to mammals), while Lepb only has three. Tissue distribution analysis showed that lepa is highly expressed in the liver, whereas lepb was not detected in any tissue. Notably, lepr was expressed in all tissues. Lepa mRNA expression levels in the liver and serum Lep, estradiol (E2) and vitellogenin (Vtg) levels of female fish were significantly higher in ovaries at stage IV than in ovaries at stage II. Serum E2 levels were significantly positively correlated with Vtg levels in female fish at different development stages, while serum E2 was not correlated with Lep levels. Consistently, in vitro incubation of the liver with E2 significantly up-regulated vtga, while it did not affect lepa expression. Recombinant Lep (10 nM) significantly up-regulated chicken gonadotropin-releasing hormone (cGnRH/GnRH-II) in the hypothalamus and GnRH receptor (GnRHR) and luteinizing hormone beta (Lhb) in the pituitary. These results suggest that lepa regulates female reproduction in S. argus.
Collapse
Affiliation(s)
- Wan-Xin Li
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Li-Ting Cai
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Yan-Ping Huang
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Yuan-Qing Huang
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Shu-Hui Pan
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Zhi-Long Liu
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Charles Brighton Ndandala
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Gang Shi
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Si-Ping Deng
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Hong-Juan Shi
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Guang-Li Li
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Dong-Neng Jiang
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China.
| |
Collapse
|
8
|
Gochicoa‐Rangel L, Chávez J, Del‐Río‐Hidalgo R, Guerrero‐Zúñiga S, Mora‐Romero U, Benítez‐Pérez R, Rodríguez‐Moreno L, Torre‐Bouscoulet L, Vargas MH. Lung function is related to salivary cytokines and hormones in healthy children. An exploratory cross-sectional study. Physiol Rep 2023; 11:e15861. [PMID: 38086735 PMCID: PMC10716032 DOI: 10.14814/phy2.15861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 12/17/2023] Open
Abstract
Pulmonary mechanics has been traditionally viewed as determined by lung size and physical factors such as frictional forces and tissue viscoelastic properties, but few information exists regarding potential influences of cytokines and hormones on lung function. Concentrations of 28 cytokines and hormones were measured in saliva from clinically healthy scholar children, purposely selected to include a wide range of body mass index (BMI). Lung function was assessed by impulse oscillometry, spirometry, and diffusing capacity for carbon monoxide, and expressed as z-score or percent predicted. Ninety-six scholar children (55.2% female) were enrolled. Bivariate analysis showed that almost all lung function variables correlated with one or more cytokine or hormone, mainly in boys, but only some of them remained statistically significant in the multiple regression analyses. Thus, after adjusting by height, age, and BMI, salivary concentrations of granulocyte-macrophage colony-stimulating factor (GM-CSF) in boys were associated with zR5-R20 and reactance parameters (zX20, zFres, and zAX), while glucagon inversely correlated with resistances (zR5 and zR20). Thus, in physiological conditions, part of the mechanics of breathing might be influenced by some cytokines and hormones, including glucagon and GM-CSF. This endogenous influence is a novel concept that warrants in-depth characterization.
Collapse
Affiliation(s)
- Laura Gochicoa‐Rangel
- Departamento de Fisiología RespiratoriaInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Instituto de Desarrollo e Innovación en Fisiología RespiratoriaMexico CityMexico
| | - Jaime Chávez
- Departamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Rodrigo Del‐Río‐Hidalgo
- Departamento de Fisiología RespiratoriaInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Present address:
Servicio de PediatríaNuevo Hospital CivilGuadalajaraMexico
| | - Selene Guerrero‐Zúñiga
- Departamento de Fisiología RespiratoriaInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Uri Mora‐Romero
- Departamento de Fisiología RespiratoriaInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Present address:
Servicio de Neumología PediátricaHospital PueblaPueblaMexico
| | - Rosaura Benítez‐Pérez
- Departamento de Fisiología RespiratoriaInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | | | | | - Mario H. Vargas
- Departamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| |
Collapse
|
9
|
Bakshi A, Rai U. Reproductive phase-dependent and sexually dimorphic expression of leptin and its receptor in different parts of brain of spotted snakehead Channa punctata. JOURNAL OF FISH BIOLOGY 2023; 102:904-912. [PMID: 36704849 DOI: 10.1111/jfb.15334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The reproductive phase-wise leptin (lep) and its receptor (lepr) expression in different parts of the brain of adult male and female spotted snakehead Channa punctata reveals sexual dimorphism in the brain leptin system. In anterior, middle and posterior parts of the brain of males, a maximum lep was observed in resting, spawning and postspawning reproductive phases, respectively. In females, a high level of lep was seen during the preparatory phase in the anterior brain, preparatory and postspawning phases in the middle brain and resting and postspawning phases in the posterior brain. Nonetheless, the transcript level of lepr was recorded highest during the spawning phase, irrespective of sex and region of the brain. Regardless of the reproductive state of fishes, lep and lepr were seen considerably high in middle and posterior parts of male brain than that of female, implying the involvement of factors other than sex steroids for sex-related variation in the leptin system in these regions of the brain. Nonetheless, no sex difference was evidenced in the expression of either ligand or its receptor in the anterior brain. In summary, the presence of lep and lepr in different regions of the brain and variation in their expression depending on sex and reproductive phases raise the possibility of pivotal actions of leptin in influencing neuronal circuitry and thereby reproductive functions.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | | |
Collapse
|
10
|
Li Y, Li P, Zhang W, Zheng X, Gu Q. New Wine in Old Bottle: Caenorhabditis Elegans in Food Science. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Weixi Zhang
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| |
Collapse
|
11
|
Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci 2023; 24:ijms24021422. [PMID: 36674935 PMCID: PMC9860943 DOI: 10.3390/ijms24021422] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, but it is also synthesized in other organs, where leptin receptors are expressed. This hormone performs numerous actions in the brain, mainly related to the control of energy homeostasis. It is also involved in neurogenesis and neuroprotection, and central leptin resistance is related to some neurological disorders, e.g., Parkinson's and Alzheimer's diseases. In peripheral tissues, leptin is implicated in the regulation of metabolism, as well as of bone density and muscle mass. All these actions can be affected by changes in leptin levels and the mechanisms associated with resistance to this hormone. This review will present recent advances in the molecular mechanisms of leptin action and their underlying roles in pathological situations, which may be of interest for revealing new approaches for the treatment of diseases where the actions of this adipokine might be compromised.
Collapse
|
12
|
Mankiewicz JL, Picklo MJ, Idso J, Cleveland BM. Leptin Receptor Deficiency Results in Hyperphagia and Increased Fatty Acid Mobilization during Fasting in Rainbow Trout (Oncorhynchus mykiss). Biomolecules 2022; 12:biom12040516. [PMID: 35454105 PMCID: PMC9028016 DOI: 10.3390/biom12040516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 12/19/2022] Open
Abstract
Leptin is a pleiotropic hormone known for regulating appetite and metabolism. To characterize the role of leptin signaling in rainbow trout, we used CRISPR/Cas9 genome editing to disrupt the leptin receptor (LepR) genes, lepra1 and lepra2. We compared wildtype (WT) and mutant fish that were either fed to satiation or feed deprived for six weeks. The LepR mutants exhibited a hyperphagic phenotype, which led to heavier body weight, faster specific growth rate, increased viscero- and hepatosomatic indices, and greater condition factor. Muscle glycogen, plasma leptin, and leptin transcripts (lepa1) were also elevated in fed LepR mutant fish. Expression levels of several hypothalamic genes involved in feed regulation were analyzed (agrp, npy, orexin, cart-1, cart-2, pomc-a1, pomc-b). No differences were detected between fed WT and mutants except for pomc-b (proopiomelanocortin-b), where levels were 7.5-fold higher in LepR fed mutants, suggesting that pomc-b expression is regulated by leptin signaling. Fatty acid (FA) content did not statistically differ in muscle of fed mutant fish compared to WT. However, fasted mutants exhibited significantly lower muscle FA concentrations, suggesting that LepR mutants exhibit increased FA mobilization during fasting. These data demonstrate a key role for leptin signaling in lipid and energy mobilization in a teleost fish.
Collapse
Affiliation(s)
- Jamie L. Mankiewicz
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV 25430, USA;
| | - Matthew J. Picklo
- Human Nutrition Research Center, USDA/ARS, 2420 2nd Ave. North, Grand Forks, ND 58203, USA; (M.J.P.); (J.I.)
| | - Joseph Idso
- Human Nutrition Research Center, USDA/ARS, 2420 2nd Ave. North, Grand Forks, ND 58203, USA; (M.J.P.); (J.I.)
| | - Beth M. Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV 25430, USA;
- Correspondence:
| |
Collapse
|
13
|
Matsumoto H, Kimura S, Nagai Y, Fukuda Y, Miyazaki K, Imai S, Inenaga T, Kashimura A. Leptin gene contributes to beef marbling standard, meat brightness, meat firmness, and beef fat standard of the Kumamoto sub-breed of Japanese Brown cattle. Anim Sci J 2022; 93:e13698. [PMID: 35247014 DOI: 10.1111/asj.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
The Kumamoto sub-breed of Japanese Brown cattle has unique characteristics, such as great growth rate, and their contribution as future breeding materials is expected. To develop a DNA marker for their breeding, we investigated the effects of Leptin gene, controlling energy homeostasis, on carcass traits of the Kumamoto sub-breed. Sequence comparison identified five single nucleotide polymorphisms (SNPs): four linked synonymous mutations and one nonsynonymous mutation. Statistical analysis revealed that c.239C > T (p.A80V) had significant effects on the traits related with quality grade: beef marbling standard (p = 0.0132), meat brightness (p = 0.0383), and meat firmness (p = 0.0115). The C allele showed favorable effects; these scores of the C/C cattle were significantly higher than those of the C/T cattle. On the other hand, the effect of c.399T > C was observed on meat firmness (p = 0.0172) and beef fat standards (BFS) (p = 0.0129). The C/C cattle showed higher values of these traits than the T/T cattle. Our data suggested that these SNPs in Leptin gene could be used as a DNA marker for breeding of the Kumamoto sub-breed.
Collapse
Affiliation(s)
- Hirokazu Matsumoto
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Satoshi Kimura
- Course of Agricultural Sciences, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Yohsuke Nagai
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Yuta Fukuda
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Kunio Miyazaki
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Saki Imai
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Toshiaki Inenaga
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Atsushi Kashimura
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| |
Collapse
|
14
|
Ait Eldjoudi D, Cordero Barreal A, Gonzalez-Rodríguez M, Ruiz-Fernández C, Farrag Y, Farrag M, Lago F, Capuozzo M, Gonzalez-Gay MA, Mera Varela A, Pino J, Gualillo O. Leptin in Osteoarthritis and Rheumatoid Arthritis: Player or Bystander? Int J Mol Sci 2022; 23:ijms23052859. [PMID: 35270000 PMCID: PMC8911522 DOI: 10.3390/ijms23052859] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
White adipose tissue (WAT) is a specialized tissue whose main function is lipid synthesis and triglyceride storage. It is now considered as an active organ secreting a plethora of hormones and cytokines namely adipokines. Discovered in 1994, leptin has emerged as a key molecule with pleiotropic functions. It is primarily recognized for its role in regulating energy homeostasis and food intake. Currently, further evidence suggests its potent role in reproduction, glucose metabolism, hematopoiesis, and interaction with the immune system. It is implicated in both innate and adaptive immunity, and it is reported to contribute, with other adipokines, in the cross-talking networks involved in the pathogenesis of chronic inflammation and immune-related diseases of the musculo-skeletal system such as osteoarthritis (OA) and rheumatoid arthritis (RA). In this review, we summarize the most recent findings concerning the involvement of leptin in immunity and inflammatory responses in OA and RA.
Collapse
Affiliation(s)
- Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (D.A.E.); (A.C.B.); (M.G.-R.); (C.R.-F.); (Y.F.); (M.F.); (J.P.)
| | - Alfonso Cordero Barreal
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (D.A.E.); (A.C.B.); (M.G.-R.); (C.R.-F.); (Y.F.); (M.F.); (J.P.)
- International PhD School, University of Santiago de Compostela (EDIUS), 15706 Santiago de Compostela, Spain
| | - María Gonzalez-Rodríguez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (D.A.E.); (A.C.B.); (M.G.-R.); (C.R.-F.); (Y.F.); (M.F.); (J.P.)
- International PhD School, University of Santiago de Compostela (EDIUS), 15706 Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (D.A.E.); (A.C.B.); (M.G.-R.); (C.R.-F.); (Y.F.); (M.F.); (J.P.)
- International PhD School, University of Santiago de Compostela (EDIUS), 15706 Santiago de Compostela, Spain
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (D.A.E.); (A.C.B.); (M.G.-R.); (C.R.-F.); (Y.F.); (M.F.); (J.P.)
| | - Mariam Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (D.A.E.); (A.C.B.); (M.G.-R.); (C.R.-F.); (Y.F.); (M.F.); (J.P.)
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - Maurizio Capuozzo
- National Health Service, Local Health Authority ASL 3 Napoli Sud, Department of Pharmacy, Ercolano, 80056 Naples, Italy;
| | - Miguel Angel Gonzalez-Gay
- Hospital Universitario Marqués de Valdecilla, Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, University of Cantabria, Avenida de Valdecilla s/n, 39011 Santander, Spain;
| | - Antonio Mera Varela
- SERGAS, Servizo Galego de Saude, Santiago University Clinical Hospital, Division of Rheumatology, 15706 Santiago de Compostela, Spain;
| | - Jesús Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (D.A.E.); (A.C.B.); (M.G.-R.); (C.R.-F.); (Y.F.); (M.F.); (J.P.)
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (D.A.E.); (A.C.B.); (M.G.-R.); (C.R.-F.); (Y.F.); (M.F.); (J.P.)
- Correspondence:
| |
Collapse
|
15
|
Leptin Reduces Plin5 m 6A Methylation through FTO to Regulate Lipolysis in Piglets. Int J Mol Sci 2021; 22:ijms221910610. [PMID: 34638947 PMCID: PMC8508756 DOI: 10.3390/ijms221910610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Perilipin5 (Plin5) is a scaffold protein that plays an important role in lipid droplets (LD) formation, but the regulatory effect of leptin on it is unclear. Our study aimed to explore the underlying mechanisms by which leptin reduces the N6-methyladenosine (m6A) methylation of Plin5 through fat mass and obesity associated genes (FTO) and regulates the lipolysis. To this end, 24 Landrace male piglets (7.73 ± 0.38 kg) were randomly sorted into two groups, either a control group (Control, n = 12) or a 1 mg/kg leptin recombinant protein treatment group (Leptin, n = 12). After 4 weeks of treatment, the results showed that leptin treatment group had lower body weight, body fat percentage and blood lipid levels, but the levels of Plin5 mRNA and protein increased significantly in adipose tissue (p < 0.05). Leptin promotes the up-regulation of FTO expression level in vitro, which in turn leads to the decrease of Plin5 M6A methylation (p < 0.05). In in vitro porcine adipocytes, overexpression of FTO aggravated the decrease of M6A methylation and increased the expression of Plin5 protein, while the interference fragment of FTO reversed the decrease of m6A methylation (p < 0.05). Finally, the overexpression in vitro of Plin5 significantly reduces the size of LD, promotes the metabolism of triglycerides and the operation of the mitochondrial respiratory chain, and increases thermogenesis. This study clarified that leptin can regulate Plin5 M6A methylation by promoting FTO to affect the lipid metabolism and energy consumption, providing a theoretical basis for treating diseases related to obesity.
Collapse
|