1
|
Zhang T, Jia L, Niu Z, Li X, Men S, Jiang L, Ma M, Wang H, Tang X, Chen Q. Comparative transcriptomic analysis delineates adaptation strategies of Rana kukunoris toward cold stress on the Qinghai-Tibet Plateau. BMC Genomics 2024; 25:363. [PMID: 38609871 PMCID: PMC11015565 DOI: 10.1186/s12864-024-10248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cold hardiness is fundamental for amphibians to survive during the extremely cold winter on the Qinghai-Tibet plateau. Exploring the gene regulation mechanism of freezing-tolerant Rana kukunoris could help us to understand how the frogs survive in winter. RESULTS Transcriptome of liver and muscle of R. kukunoris collected in hibernation and spring were assisted by single molecule real-time (SMRT) sequencing technology. A total of 10,062 unigenes of R. kukunoris were obtained, and 9,924 coding sequences (CDS) were successfully annotated. Our examination of the mRNA response to whole body freezing and recover in the frogs revealed key genes concerning underlying antifreeze proteins and cryoprotectants (glucose and urea). Functional pathway analyses revealed differential regulated pathways of ribosome, energy supply, and protein metabolism which displayed a freeze-induced response and damage recover. Genes related to energy supply in the muscle of winter frogs were up-regulated compared with the muscle of spring frogs. The liver of hibernating frogs maintained modest levels of protein synthesis in the winter. In contrast, the liver underwent intensive high levels of protein synthesis and lipid catabolism to produce substantial quantity of fresh proteins and energy in spring. Differences between hibernation and spring were smaller than that between tissues, yet the physiological traits of hibernation were nevertheless passed down to active state in spring. CONCLUSIONS Based on our comparative transcriptomic analyses, we revealed the likely adaptive mechanisms of R. kukunoris. Ultimately, our study expands genetic resources for the freezing-tolerant frogs.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lun Jia
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinying Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shengkang Men
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lu Jiang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Ning Z, Chen Y, Wang Z, Zhou H, Sun M, Yao T, Mu W. Transcriptome, histological, and physiological responses of Amur sleeper (Perccottus glenii) during cold stress, freezing, and recovery. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101192. [PMID: 38278046 DOI: 10.1016/j.cbd.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Freeze tolerance is a survival strategy employed by some ectotherms living in extremely cold environments. Some fish in extremely cold areas can recover from their frozen state, but they also have to endure cold stress. Amur sleeper (Perccottus glenii) can recover from a completely frozen state. To explore the response of freeze-resistant fish to low temperatures, we analyzed histological alterations, and antioxidant and carbohydrate-lipid metabolizing enzymes of P. glenii under low temperatures. So far, sensory genes regulating P. glenii during cold stress, freezing, and recovery have not been identified. Ultrastructure results indicated that glycogen content and mitochondrial ridge decreased during cold stress and freezing, whereas the number of endoplasmic reticulum increased during recovery. Plasma glucose and glycerol levels of the three treatment groups significantly increased. Lactate dehydrogenase and pyruvate kinase levels significantly increased during cold stress and freezing, and hexokinase levels significantly increased during cold stress. In total, 30,560 unigenes were found (average length 1724 bp, N50 2843 bp). In addition, 7370 differentially expressed genes (DEGs; including 2938 upregulated genes and 4432 downregulated genes) were identified. KEGG analysis revealed that the DEGs were enriched in carbohydrate and lipid metabolism, lipid synthesis, immune system, and anti-apoptosis. Genes involved in glycolysis and phospholipid metabolism were significantly upregulated during cold stress; genes related to circadian rhythm, oxidative phosphorylation, and lipid synthesis were significantly upregulated during freezing; and genes involved in the immune system and anti-apoptosis were significantly upregulated during recovery. Our results attempt to offer new insights into the physiological mechanisms of complex adaptation in P. glenii and provide useful information for future studies on the mechanism underlying freezing/recovery in animals.
Collapse
Affiliation(s)
- Zhaoyang Ning
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yingqiao Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zijian Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Haishui Zhou
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Mingyang Sun
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Tiehui Yao
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
3
|
de Amaral M, Von Dentz MC, Ressel Simões LA, Vogt É, Heiermann D, Fischer P, Colombo P, Kucharski LC. Metabolic changes in the subtropical frog Boana pulchella during experimental cooling and recovery conditions. J Therm Biol 2023; 117:103705. [PMID: 37714110 DOI: 10.1016/j.jtherbio.2023.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Frogs have developed biochemical and physiological adaptations to occupy diverse ecological niches on Earth successfully. Survival in frozen states is a fascinating strategy made possible by evolving adaptations to produce cryoprotectant solutes. The hylid frog Boana pulchella thrives in South American regions with cold climates, remaining active while enduring sporadic subzero temperatures during winter. The species' metabolic changes during subzero exposure remain unclear. Therefore, we exposed B. pulchella to cooling and recovery, assessing plasma and tissue metabolite changes. Cooling significantly reduced urea concentrations in plasma (P = 0.033), muscle (P = 0.001), heart (P = 0.009), and brain (P = 0.041) compared to acclimation. Liver glucose oxidation and glycogen synthesis were lower in cooling and recovery than in acclimation (P < 0.0001 and P = 0.0117, respectively). Muscle glycogen synthesis was lower in recovery than acclimation (P = 0.0249). These results demonstrate B. pulchella's physiological strategies during subzero exposure, likely reflecting species-specific evolutionary adaptations for brief subzero exposures that enable winter survival in its natural habitat.
Collapse
Affiliation(s)
- Marjoriane de Amaral
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600, 90035003, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Maiza Cristina Von Dentz
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600, 90035003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Airton Ressel Simões
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600, 90035003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Éverton Vogt
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600, 90035003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Dener Heiermann
- Museum of Natural Sciences of the Secretariat of Environment and Infrastructure of Rio Grande do Sul (SEMA), FZB, Department of Herpetology/Amphibians, Doutor Salvador França, 90690000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Fischer
- Museum of Natural Sciences of the Secretariat of Environment and Infrastructure of Rio Grande do Sul (SEMA), FZB, Department of Herpetology/Amphibians, Doutor Salvador França, 90690000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrick Colombo
- Museum of Natural Sciences of the Secretariat of Environment and Infrastructure of Rio Grande do Sul (SEMA), FZB, Department of Herpetology/Amphibians, Doutor Salvador França, 90690000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Carlos Kucharski
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600, 90035003, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|