1
|
Efthimiou I, Kalamaras G, Papavasileiou K, Anastasi-Papathanasi N, Georgiou Y, Dailianis S, Deligiannakis Y, Vlastos D. ZnO, Ag and ZnO-Ag nanoparticles exhibit differential modes of toxic and oxidative action in hemocytes of mussel Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144699. [PMID: 33636791 DOI: 10.1016/j.scitotenv.2020.144699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
The present study investigates the cytotoxic and oxidative effects of custom-made nanoparticles (NPs) on hemocytes of Mytilus galloprovincialis, utilizing hemolymph serum (HS) as exposure medium. Specifically, hemocyte lysosomal membrane destabilization (in terms of neutral red retention time assay/NRRT), superoxide anion (O2-), nitric oxide (NO, in terms of nitrites) and lipid peroxidation content (in terms of malondialdehyde/MDA equivalents) were determined in cells treated for 1 h with different concentrations (0.1-50 μg mL-1) of ZnO NPs, Ag NPs and ZnO-Ag NPs, as well as AgNO3 and/or ZnCl2 (bulk ions, respectively). According to the results, Ag NPs were more cytotoxic than ZnO-Ag NPs and/or ZnO NPs, while NRRT values observed in AgNO3 treated cells were lower than those of ZnCl2. Furthermore, high levels of both O2- and MDA were detected in cells treated with Ag NPs, ZnO-Ag NPs, and AgNO3 at concentrations lower than 5 μg mL-1, while high NO generation was observed only in cells treated with 5-25 μg mL-1 of ZnO NPs or ZnCl2. Despite the absence of data, regarding the formation of NP-serum protein corona complexes that could mediate NP surface energy and uptake efficiency, the current study firstly revealed that ZnO NPs, probably via their surface charge, particle agglomeration, and NP Zn+ release could promote an immune-related generation of O2- and NO via the respiratory burst stimulation, a process that is questioned in the case of Ag NPs and/or ZnO-Ag NPs. Moreover, ZnO-Ag NP interaction with biological membranes and their oxidative mode of action seemed to be regulated by the release and the antagonistic/synergistic response of its ionic counterparts (ZnO+ and Ag+), but further studies are needed to elucidate the oxidative mode of action of NP metal ions in complex NP mixtures.
Collapse
Affiliation(s)
- Ioanna Efthimiou
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | | | | | | | - Yiannis Georgiou
- Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| | | | | | - Dimitris Vlastos
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece.
| |
Collapse
|
2
|
Ladhar-Chaabouni R, Hamza-Chaffai A. The cell cultures and the use of haemocytes from marine molluscs for ecotoxicology assessment. Cytotechnology 2015; 68:1669-85. [PMID: 26611734 DOI: 10.1007/s10616-015-9932-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/14/2015] [Indexed: 12/20/2022] Open
Abstract
Among aquatic organisms suitable for biological monitoring, molluscs occupy a prominent place due to their wide geographic distribution, their abundance and accessibility in the field as well as in aquaculture. Molluscs reflect the degree of environmental contamination and are the most useful bioindicator tools. The study of modulation of immune system or immunomodulation in marine molluscs has become one of the privileged ways for evaluating the physiological effects of environmental factors. Physiological responses of molluscs to environmental stresses could be mediated by haemocytes. These cells are continually exposed to the external environment due to the open circulatory system of molluscs and are affected by pollutants. In fact, several studies showed the effects of different environmental contaminants on haemocyte functions (viability, phagocytosis, ROS production) as well as on proteins involved in cytoskeletal structure maintenance using the in vitro approaches. In ecotoxicology, in vitro approach is an alternative to animal testing due to the reduced use of experimental animals, low cost and rapid performance. Although several studies showed the importance of using in vitro cell models to determine the effects of different environmental contaminants on haemocyte parameters in marine molluscs, a few reviews highlight these effects. The main purpose of this paper is to summarize the recent data on the effect of some xenobiotics on haemocyte parameters in some mollusc species and then suggest future research prospects.
Collapse
Affiliation(s)
- Rim Ladhar-Chaabouni
- Marine Ecotoxicology, UR 09-03, IPEIS BP 805, University of Sfax, 3018, Sfax, Tunisia.
| | - Amel Hamza-Chaffai
- Marine Ecotoxicology, UR 09-03, IPEIS BP 805, University of Sfax, 3018, Sfax, Tunisia
| |
Collapse
|
3
|
Beltrán C, Rodríguez-Miranda E, Granados-González G, de De la Torre LG, Nishigaki T, Darszon A. Zn(2+) induces hyperpolarization by activation of a K(+) channel and increases intracellular Ca(2+) and pH in sea urchin spermatozoa. Dev Biol 2014; 394:15-23. [PMID: 25092071 PMCID: PMC4163537 DOI: 10.1016/j.ydbio.2014.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/01/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022]
Abstract
Zinc (Zn(2+)) has been recently recognized as a crucial element for male gamete function in many species although its detailed mechanism of action is poorly understood. In sea urchin spermatozoa, Zn(2+) was reported as an essential trace ion for efficient sperm motility initiation and the acrosome reaction by modulating intracellular pH (pHi). In this study we found that submicromolar concentrations of free Zn(2+) change membrane potential (Em) and increase the concentration of intracellular Ca(2+) ([Ca(2+)]i) and cAMP in Lytechinus pictus sperm. Our results indicate that the Zn(2+) response in sperm of this species mainly involves an Em hyperpolarization caused by K(+) channel activation. The pharmacological profile of the Zn(2+)-induced hyperpolarization indicates that the cGMP-gated K(+) selective channel (tetraKCNG/CNGK), which is crucial for speract signaling, is likely a main target for Zn(2+). Considering that Zn(2+) also induces [Ca(2+)]i fluctuations, our observations suggest that Zn(2+) activates the signaling cascade of speract, except for an increase in cGMP, and facilitates sperm motility initiation upon spawning. These findings provide new insights about the role of Zn(2+) in male gamete function.
Collapse
Affiliation(s)
- Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62210, México
| | - Esmeralda Rodríguez-Miranda
- Departamento de Medicina y Nutrición, División de Ciencias de la Salud, Universidad de Guanajuato; Campus León. Guanajuato CP 37320, México
| | - Gisela Granados-González
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México CP 50000, México
| | | | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62210, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62210, México
| |
Collapse
|
4
|
Ciacci C, Canonico B, Bilaniĉovă D, Fabbri R, Cortese K, Gallo G, Marcomini A, Pojana G, Canesi L. Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis. PLoS One 2012; 7:e36937. [PMID: 22606310 PMCID: PMC3350491 DOI: 10.1371/journal.pone.0036937] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/14/2012] [Indexed: 02/03/2023] Open
Abstract
The potential toxicity of engineered nanoparticles (NPs) for humans and the environment represents an emerging issue. Since the aquatic environment represents the ultimate sink for NP deposition, the development of suitable assays is needed to evaluate the potential impact of NPs on aquatic biota. The immune system is a sensitive target for NPs, and conservation of innate immunity represents an useful basis for studying common biological responses to NPs. Suspension-feeding invertebrates, such as bivalves, are particularly at risk to NP exposure, since they have extremely developed systems for uptake of nano and microscale particles integral to intracellular digestion and cellular immunity. Evaluation of the effects of NPs on functional parameters of bivalve immunocytes, the hemocytes, may help understanding the major toxic mechanisms and modes of actions that could be relevant for different NP types in aquatic organisms.In this work, a battery of assays was applied to the hemocytes of the marine bivalve Mytilus galloprovincialis to compare the in vitro effects of different n-oxides (n-TiO(2), n-SiO(2), n-ZnO, n-CeO(2)) chosen on the basis of their commercial and environmental relevance. Physico-chemical characterization of both primary particles and NP suspensions in artificial sea water-ASW was performed. Hemocyte lysosomal and mitochondrial parameters, oxyradical and nitric oxide production, phagocytic activity, as well as NP uptake, were evaluated. The results show that different n-oxides rapidly elicited differential responses hemocytes in relation to their chemical properties, concentration, behavior in sea water, and interactions with subcellular compartments. These represent the most extensive data so far available on the effects of NPs in the cells of aquatic organisms. The results indicate that Mytilus hemocytes can be utilized as a suitable model for screening the potential effects of NPs in the cells of aquatic invertebrates, and may provide a basis for future experimental work for designing environmentally safer nanomaterials.
Collapse
Affiliation(s)
- Caterina Ciacci
- Dipartimento di Scienze della Terra, della Vita e dell’Ambiente - DISUAN, Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy
| | - Barbara Canonico
- Dipartimento di Scienze della Terra, della Vita e dell’Ambiente - DISUAN, Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy
| | - Dagmar Bilaniĉovă
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari di Venezia, Venezia, Italy
| | - Rita Fabbri
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, DISTAV, Università di Genova, Genova, Italy
| | - Katia Cortese
- Dipartimento di Medicina Sperimentale - DIMES, Università di Genova, Genova, Italy
| | - Gabriella Gallo
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, DISTAV, Università di Genova, Genova, Italy
| | - Antonio Marcomini
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari di Venezia, Venezia, Italy
| | - Giulio Pojana
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari di Venezia, Venezia, Italy
| | - Laura Canesi
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, DISTAV, Università di Genova, Genova, Italy
| |
Collapse
|
5
|
Ciacci C, Barmo C, Fabbri R, Canonico B, Gallo G, Canesi L. Immunomodulation in Mytilus galloprovincialis by non-toxic doses of hexavalent chromium. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1026-1033. [PMID: 21925273 DOI: 10.1016/j.fsi.2011.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/18/2011] [Accepted: 09/06/2011] [Indexed: 05/31/2023]
Abstract
In aquatic organisms, the immune function can be affected by exposure to environmental pollutants, including heavy metals. In vertebrate systems, different forms of Cr have been shown induce either immunostimulatory or immunosuppressive processes. Hexavalent Cr, Cr(VI), is an important contaminant released from both domestic and industrial effluents, and the predominant chemical form of the metal in aquatic ecosystems. In this work, the in vitro and in vivo effects of Cr(VI) on immune parameters of the marine bivalve Mytilus galloprovincialis were evaluated. Hemocyte incubation with different concentrations of Cr(VI) (0.1-1-10-100 μM) induced a dose-dependent decrease in lysosomal membrane stability (LMS). Decreases in extracellular lysozyme release and phagocytic activity were also observed, with stronger effects at lower metal concentrations. On the other hand, in these conditions, Cr(VI) stimulated extracellular superoxide production and nitrite accumulation. The effects of Cr(VI) were also evaluated in mussels exposed to the metal (0.1-1-10 μg L(-1), corresponding to nanomolar concentrations) for 96 h. Decreases in hemocyte LMS values and in serum lysozyme activity were observed with increasing metal concentrations. Decreased phagocytic activity and increased NO production were recorded, with stronger effects at lower concentrations. In these conditions, decreased Total Hemocyte Counts (THC), but no necrotic/apoptotic processes were observed. Moreover, Cr(VI) at both 0.1 and 1 μg L(-1) seemed to induce significant changes in transcription of immune genes (lysozyme, Mytilin C, Myticin B, defensin, MgC1q), of the serotonin receptor (5-HTR) and of the stress protein HSP70, whereas that of the anti-apoptotic gene p53 was unaffected. Overall, the results indicate that exposure to non-toxic, environmentally relevant concentrations of Cr(VI) can modulate functional and molecular immune parameters in M. galloprovincialis.
Collapse
Affiliation(s)
- C Ciacci
- DISUAN, Dipartimento di Scienze dell'Uomo, dell'Ambiente e della Natura, Università Carlo Bo di Urbino, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Boutet I, Ripp R, Lecompte O, Dossat C, Corre E, Tanguy A, Lallier FH. Conjugating effects of symbionts and environmental factors on gene expression in deep-sea hydrothermal vent mussels. BMC Genomics 2011; 12:530. [PMID: 22034982 PMCID: PMC3218092 DOI: 10.1186/1471-2164-12-530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/28/2011] [Indexed: 11/17/2022] Open
Abstract
Background The deep-sea hydrothermal vent mussel Bathymodiolus azoricus harbors thiotrophic and methanotrophic symbiotic bacteria in its gills. While the symbiotic relationship between this hydrothermal mussel and these chemoautotrophic bacteria has been described, the molecular processes involved in the cross-talking between symbionts and host, in the maintenance of the symbiois, in the influence of environmental parameters on gene expression, and in transcriptome variation across individuals remain poorly understood. In an attempt to understand how, and to what extent, this double symbiosis affects host gene expression, we used a transcriptomic approach to identify genes potentially regulated by symbiont characteristics, environmental conditions or both. This study was done on mussels from two contrasting populations. Results Subtractive libraries allowed the identification of about 1000 genes putatively regulated by symbiosis and/or environmental factors. Microarray analysis showed that 120 genes (3.5% of all genes) were differentially expressed between the Menez Gwen (MG) and Rainbow (Rb) vent fields. The total number of regulated genes in mussels harboring a high versus a low symbiont content did not differ significantly. With regard to the impact of symbiont content, only 1% of all genes were regulated by thiotrophic (SOX) and methanotrophic (MOX) bacteria content in MG mussels whereas 5.6% were regulated in mussels collected at Rb. MOX symbionts also impacted a higher proportion of genes than SOX in both vent fields. When host transcriptome expression was analyzed with respect to symbiont gene expression, it was related to symbiont quantity in each field. Conclusions Our study has produced a preliminary description of a transcriptomic response in a hydrothermal vent mussel host of both thiotrophic and methanotrophic symbiotic bacteria. This model can help to identify genes involved in the maintenance of symbiosis or regulated by environmental parameters. Our results provide evidence of symbiont effect on transcriptome regulation, with differences related to type of symbiont, even though the relative percentage of genes involved remains limited. Differences observed between the vent site indicate that environment strongly influences transcriptome regulation and impacts both activity and relative abundance of each symbiont. Among all these genes, those participating in recognition, the immune system, oxidative stress, and energy metabolism constitute new promising targets for extended studies on symbiosis and the effect of environmental parameters on the symbiotic relationships in B. azoricus.
Collapse
Affiliation(s)
- Isabelle Boutet
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29682 Roscoff, France.
| | | | | | | | | | | | | |
Collapse
|
7
|
Koutsogiannaki S, Kaloyianni M. Effect of 17β-estradiol on adhesion of Mytilus galloprovincialis hemocytes to selected substrates. Role of alpha2 integrin subunit. FISH & SHELLFISH IMMUNOLOGY 2011; 31:73-80. [PMID: 21524703 DOI: 10.1016/j.fsi.2011.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/30/2011] [Accepted: 04/11/2011] [Indexed: 05/30/2023]
Abstract
The process of hemocyte adhesion to extracellular matrix (ECM) proteins plays a crucial role in cell immunity. In most of these interactions between ECM proteins and cells, integrins are involved. The results of the present study showed that incubation of Mytilus galloprovincialis hemocytes with 17β-estradiol caused significant increased adhesion of hemocytes to ECM proteins and specifically to laminin-1, collagen IV and oxidized collagen IV, in relation to control cells. The adhesion of hemocytes to oxidized collagen was significantly higher than to either collagen IV or to laminin-1. In accordance with this, inhibition of either NADPH oxidase or nitric oxide (NO) synthase attenuated 17β-estradiol effect on hemocyte adhesion, suggesting that the high levels of free radicals, produced after 17β-estradiol effect, could contribute to the high adhesion of hemocytes to laminin-1 and collagen IV. The implication of ROS was further confirmed by the use of the oxidant rotenone, which caused elevation of cell adhesion in relation to control and by the antioxidant NAC which attenuated 17β-estradiol effect. The mechanism of 17β-estradiol induced adhesion to laminin-1, collagen IV and oxidized collagen IV involves a large number of intracellular components, as Na+/H+ exchanger (NHE), all isoforms of protein kinase C (PKC), phosphatidylinositol-3-kinase (PI3K) and c-jun N-terminal kinase (JNK) as well as alpha2 integrin subunit. Maintenance of high cyclic adenosine-3'-5'-monophosphate (cAMP) levels caused non significant higher adhesion of hemocytes to ECM proteins in relation to control cells. Our results showed that 17β-estradiol caused a significant increase in α₂ integrin subunit levels, which was reduced after inhibition of NHE, PI3K, PKC, NO synthase, NADPH oxidase and JNK. In addition, our results showed that apart from 17β-estradiol, high cAMP and high ROS levels caused significantly higher induction of α₂ integrin subunit levels in relation to control. Our results imply a potential involvement of cAMP in immune responses of Mytilus hemocytes, which needs further investigation.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | |
Collapse
|
8
|
Thompson EL, Taylor DA, Nair SV, Birch G, Haynes PA, Raftos DA. A proteomic analysis of the effects of metal contamination on Sydney Rock Oyster (Saccostrea glomerata) haemolymph. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 103:241-9. [PMID: 21530475 DOI: 10.1016/j.aquatox.2011.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 05/20/2023]
Abstract
The current study uses proteomics to assess the effects of metal contamination on Sydney Rock oyster haemolymph. Saccostrea glomerata were exposed in aquaria for four days to three environmentally relevant metals (copper, lead or zinc). Oyster haemolymph proteins from metal-exposed oysters were then compared to haemolymph from non-exposed controls using 2-dimensional electrophoresis to identify proteins that differed significantly in intensity. These proteins were then subjected to tandem mass spectrometry so that putative protein identities could be assigned. The data suggest that there are unique protein expression profiles for each metal. Exposure to 100 μg/l of copper, lead or zinc yielded a total of 25 differentially expressed proteins. However, only one of these protein spots exhibited altered intensities in response to all three metals. Eighteen of the 25 spots were significantly affected by just one of the three metals. Differentially expressed proteins were assigned to five different categories of biological function. Proteins affecting shell properties were the most common functional group accounting for 34% of the identified proteins. Cytoskeletal activities and metabolism/stress responses each accounted for a further 25% of the proteins.
Collapse
Affiliation(s)
- Emma L Thompson
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Dailianis S, Patetsini E, Kaloyianni M. The role of signalling molecules on actin glutathionylation and protein carbonylation induced by cadmium in haemocytes of mussel Mytilus galloprovincialis (Lmk). ACTA ACUST UNITED AC 2010; 212:3612-20. [PMID: 19880721 DOI: 10.1242/jeb.030817] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study investigated the role of Na(+)/H(+) exchanger (NHE) and signalling molecules, such as cAMP, PKC, PI 3-kinase, and immune defence enzymes, NADPH oxidase and nitric oxide synthase, in the induction of protein glutathionylation and carbonylation in cadmium-treated haemocytes of mussel Mytilus galloprovincialis. Glutathionylation was detected by western blot analysis and showed actin as its main target. A significant increase of both actin glutathionylation and protein carbonylation, were observed in haemocytes exposed to micromolar concentration of cadmium chloride (5 micromol l(-1)). Cadmium seems to cause actin polymerization that may lead to its increased glutathionylation, probably to protect it from cadmium-induced oxidative stress. It is therefore possible that polymerization of actin plays a signalling role in the induction of both glutathionylation and carbonylation processes. NHE seems to play a regulatory role in the induction of oxidative damage and actin glutathionylation, since its inhibition by 2 micromol l(-1) cariporide, significantly diminished cadmium effects in each case. Similarly, attenuation of cadmium effects were observed in cells pre-treated with either 11 micromol l(-1) GF-109203X, a potent inhibitor of PKC, 50 nmol l(-1) wortmannin, an inhibitor of PI 3-kinase, 0.01 mmol l(-1) forskolin, an adenylyl cyclase activator, 10 micromol l(-1) DPI, a NADPH oxidase inhibitor, or 10 micromol l(-1) L-NAME, a nitric oxide synthase inhibitor, suggesting a possible role of PKC, PI 3-kinase and cAMP, as well as NADPH oxidase and nitric oxide synthase in the enhancement of cadmium effects on both actin glutathionylation and protein carbonylation.
Collapse
|
10
|
Kaloyianni M, Dailianis S, Chrisikopoulou E, Zannou A, Koutsogiannaki S, Alamdari DH, Koliakos G, Dimitriadis VK. Oxidative effects of inorganic and organic contaminants on haemolymph of mussels. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:631-9. [PMID: 19358338 DOI: 10.1016/j.cbpc.2009.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We applied a newly-established method in haemolymph of mussels, Mytilus galloprovincialis, exposed to different concentrations of heavy metals, such as zinc and cadmium and organic pollutants, such as PAHs and lindane, for the detection of total antioxidant capacity (TAC). The susceptibility of exposed mussels was increased in relation to oxidative stress induced by contaminants tested. Oxidative modifications of proteins were estimated by measuring protein carbonyl content (PCC) and malondialdehyde levels (MDA). For PCC measurement, a highly sensitive and accurate ELISA method, which requires only 5 microg of protein, was used. The significant increase of PCC and MDA in haemolymph of exposed mussels reinforces its role as biomarkers of oxidative stress. Significant correlation of TAC assay, PCC and MDA was conducted in order to evaluate the utility of PCC and TAC assay, used in the present study, as tools for determining oxidative effects of pollutants in mussels. The results reinforce the application of PCC method as useful tool for the determination of PCC alterations in haemolymph of mussels exposed to different levels of contaminants. In addition, the TAC method gives encouraging results, concerning its ability to predict antioxidant efficiency in haemolymph of mussels exposed to inorganic and organic contaminants.
Collapse
Affiliation(s)
- M Kaloyianni
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | | | | | |
Collapse
|