1
|
Chen Y, Jiang Y, Sarvanantharajah N, Apirakkan O, Yang M, Milcova A, Topinka J, Abbate V, Arlt VM, Stürzenbaum SR. Genome-modified Caenorhabditis elegans expressing the human cytochrome P450 (CYP1A1 and CYP1A2) pathway: An experimental model for environmental carcinogenesis and pharmacological research. ENVIRONMENT INTERNATIONAL 2024; 194:109187. [PMID: 39671827 DOI: 10.1016/j.envint.2024.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), including the Group 1 human carcinogen benzo[a]pyrene (BaP), are produced by the incomplete combustion of organic matter and thus are present in tobacco smoke, charbroiled food and diesel exhaust. The nematode Caenorhabditis elegans is an established model organism, however it lacks the genetic components of the classical mammalian cytochrome P450 (CYP)-mediated BaP-diol-epoxide metabolism pathway. We therefore introduced human CYP1A1 or CYP1A2 together with human epoxide hydrolase (EPHX) into the worm genome by Mos1-mediated Single Copy Insertion (MosSCI) and evaluated their response to BaP exposure via toxicological endpoints. Compared to wild-type control, CYP-humanised worms were characterised by an increase in pharyngeal pumping rate and a decrease in volumetric surface area. Furthermore, BaP exposure reduced reproductive performance, as reflected in smaller brood size, which coincided with the downregulation of the nematode-specific major sperm protein as determined by transcriptomics (RNAseq). BaP-mediated reproductive toxicity was exacerbated in CYP-humanised worms at higher exposure levels. Collagen-related genes were downregulated in BaP-exposed animals, which correlate with the reduction in volumetric size. Whole genome DNA sequencing revealed a higher frequency of T > G (A > C) base substitution mutations in worms expressing human CYP1A1;EPHX which aligned with an increase in DNA adducts identified via an ELISA method (but not classical 32P-postlabelling). Overall, the CYP-humanised worms provided new insights into the value of genome-optimised invertebrate models by identifying the benefits and limitations within the context of the (3Rs) concept which aims to replace, reduce and refine the use of animals in research.
Collapse
Affiliation(s)
- Yuzhi Chen
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yang Jiang
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, Netherlands
| | - Nirujah Sarvanantharajah
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Orapan Apirakkan
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mengqi Yang
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Alena Milcova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jan Topinka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Toxicology Department, GAB Consulting GmbH, 69126 Heidelberg, Germany
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
2
|
Lakshmanan LN, Yee Z, Ng LF, Gunawan R, Halliwell B, Gruber J. Clonal expansion of mitochondrial DNA deletions is a private mechanism of aging in long-lived animals. Aging Cell 2018; 17:e12814. [PMID: 30043489 PMCID: PMC6156498 DOI: 10.1111/acel.12814] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/25/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
Disruption of mitochondrial metabolism and loss of mitochondrial DNA (mtDNA) integrity are widely considered as evolutionarily conserved (public) mechanisms of aging (López-Otín et al., Cell, 153, 2013 and 1194). Human aging is associated with loss in skeletal muscle mass and function (Sarcopenia), contributing significantly to morbidity and mortality. Muscle aging is associated with loss of mtDNA integrity. In humans, clonally expanded mtDNA deletions colocalize with sites of fiber breakage and atrophy in skeletal muscle. mtDNA deletions may therefore play an important, possibly causal role in sarcopenia. The nematode Caenorhabditis elegans also exhibits age-dependent decline in mitochondrial function and a form of sarcopenia. However, it is unclear if mtDNA deletions play a role in C. elegans aging. Here, we report identification of 266 novel mtDNA deletions in aging nematodes. Analysis of the mtDNA mutation spectrum and quantification of mutation burden indicates that (a) mtDNA deletions in nematode are extremely rare, (b) there is no significant age-dependent increase in mtDNA deletions, and (c) there is little evidence for clonal expansion driving mtDNA deletion dynamics. Thus, mtDNA deletions are unlikely to drive the age-dependent functional decline commonly observed in C. elegans. Computational modeling of mtDNA dynamics in C. elegans indicates that the lifespan of short-lived animals such as C. elegans is likely too short to allow for significant clonal expansion of mtDNA deletions. Together, these findings suggest that clonal expansion of mtDNA deletions is likely a private mechanism of aging predominantly relevant in long-lived animals such as humans and rhesus monkey and possibly in rodents.
Collapse
Affiliation(s)
- Lakshmi Narayanan Lakshmanan
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment GenopodeLausanneSwitzerland
| | - Zhuangli Yee
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Li Fang Ng
- Ageing Research Laboratory, Science DivisionYale‐NUS CollegeSingaporeSingapore
| | - Rudiyanto Gunawan
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment GenopodeLausanneSwitzerland
| | - Barry Halliwell
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Jan Gruber
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Ageing Research Laboratory, Science DivisionYale‐NUS CollegeSingaporeSingapore
| |
Collapse
|
3
|
Imanikia S, Galea F, Nagy E, Phillips DH, Stürzenbaum SR, Arlt VM. The application of the comet assay to assess the genotoxicity of environmental pollutants in the nematode Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:356-61. [PMID: 27389785 PMCID: PMC4962771 DOI: 10.1016/j.etap.2016.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Accepted: 06/18/2016] [Indexed: 05/04/2023]
Abstract
This study aimed to establish a protocol for cell dissociation from the nematode Caenorhabditis elegans (C. elegans) to assess the genotoxicity of the environmental pollutant benzo[a]pyrene (BaP) using the alkaline version of the single cell electrophoresis assay (comet assay). BaP genotoxicity was assessed in C. elegans (wild-type [WT]; N2, Bristol) after 48h exposure (0-40μM). Induction of comets by BaP was concentration-dependent up to 20μM; comet% tail DNA was ∼30% at 20μM BaP and ∼10% in controls. Similarly, BaP-induced DNA damage was evaluated in C. elegans mutant strains deficient in DNA repair. In xpa-1 and apn-1 mutants BaP-induced comet formation was diminished to WT background levels suggesting that the damage formed by BaP that is detected in the comet assay is not recognised in cells deficient in nucleotide and base excision repair, respectively. In summary, our study provides a protocol to evaluate DNA damage of environmental pollutants in whole nematodes using the comet assay.
Collapse
Affiliation(s)
- Soudabeh Imanikia
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Francesca Galea
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Eszter Nagy
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom; NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England, London, United Kingdom
| | - Stephen R Stürzenbaum
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom; NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England, London, United Kingdom.
| |
Collapse
|
4
|
Boyd WA, Crocker TL, Rodriguez AM, Leung MCK, Lehmann DW, Freedman JH, Van Houten B, Meyer JN. Nucleotide excision repair genes are expressed at low levels and are not detectably inducible in Caenorhabditis elegans somatic tissues, but their function is required for normal adult life after UVC exposure. Mutat Res 2010; 683:57-67. [PMID: 19879883 PMCID: PMC2799044 DOI: 10.1016/j.mrfmmm.2009.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/06/2009] [Accepted: 10/16/2009] [Indexed: 04/09/2023]
Abstract
We performed experiments to characterize the inducibility of nucleotide excision repair (NER) in Caenorhabditis elegans, and to examine global gene expression in NER-deficient and -proficient strains as well as germline vs. somatic tissues, with and without genotoxic stress. We also carried out experiments to elucidate the importance of NER in the adult life of C. elegans under genotoxin-stressed and control conditions. Adult lifespan was not detectably different between wild-type and NER-deficient xpa-1 nematodes under control conditions. However, exposure to 6J/m(2)/day of ultraviolet C radiation (UVC) decreased lifespan in xpa-1 nematodes more than a dose of 100 J/m(2)/day in wild-type. Similar differential sensitivities were observed for adult size and feeding. Remarkably, global gene expression was nearly identical in young adult wild-type and xpa-1 nematodes, both in control conditions and 3h after exposure to 50 J/m(2) UVC. Neither NER genes nor repair activity were detectably inducible in young adults that lacked germ cells and developing embryos (glp-1 strain). However, expression levels of dozens of NER and other DNA damage response genes were much (5-30-fold) lower in adults lacking germ cells and developing embryos, suggesting that somatic and post-mitotic cells have a much lower DNA repair ability. Finally, we describe a refinement of our DNA damage assay that allows damage measurement in single nematodes.
Collapse
Affiliation(s)
- Windy A. Boyd
- Biomolecular Screening Branch, National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Tracey L. Crocker
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Ana M. Rodriguez
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | | | - D. Wade Lehmann
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Jonathan H. Freedman
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ben Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708
- Address correspondence to: Joel N. Meyer
| |
Collapse
|
5
|
Menzel R, Swain SC, Hoess S, Claus E, Menzel S, Steinberg CE, Reifferscheid G, Stürzenbaum SR. Gene expression profiling to characterize sediment toxicity--a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 2009; 10:160. [PMID: 19366437 PMCID: PMC2674462 DOI: 10.1186/1471-2164-10-160] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 04/14/2009] [Indexed: 12/20/2022] Open
Abstract
Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high) levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay) and endocrine disruption (YES test). Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments.
Collapse
Affiliation(s)
- Ralph Menzel
- School of Biomedical & Health Sciences, Pharmaceutical Science Division, King's College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 2008; 106:5-28. [PMID: 18566021 PMCID: PMC2563142 DOI: 10.1093/toxsci/kfn121] [Citation(s) in RCA: 704] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/10/2008] [Indexed: 12/21/2022] Open
Abstract
The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research.
Collapse
Affiliation(s)
- Maxwell C. K. Leung
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27750
| | - Phillip L. Williams
- Department of Environmental Health Science, College of Public University of Georgia, Athens, Georgia 30602
| | - Alexandre Benedetto
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Catherine Au
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Kirsten J. Helmcke
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27750
| |
Collapse
|