1
|
Garcia-Olazabal M, Adolfi MC, Wilde B, Hufnagel A, Paudel R, Lu Y, Meierjohann S, Rosenthal GG, Schartl M. Functional test of a naturally occurred tumor modifier gene provides insights to melanoma development. G3 (BETHESDA, MD.) 2025; 15:jkae298. [PMID: 39820438 PMCID: PMC11797068 DOI: 10.1093/g3journal/jkae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
Occurrence of degenerative interactions is thought to serve as a mechanism underlying hybrid unfitness in most animal systems. However, the molecular mechanisms underpinning the genetic interaction and how they contribute to overall hybrid incompatibilities are limited to only a handful of examples. A vertebrate model organism, Xiphophorus, is used to study hybrid dysfunction, and it has been shown from this model that diseases, such as melanoma, can occur in certain interspecies hybrids. Melanoma development is due to hybrid inheritance of an oncogene, xmrk, and loss of a co-evolved tumor modifier. It was recently found that adgre5, a G protein-coupled receptor involved in cell adhesion, is a tumor regulator gene in naturally hybridizing Xiphophorus species Xiphophorus birchmanni (X. birchmanni) and Xiphophorus malinche (X. malinche). We hypothesized that 1 of the 2 parental alleles of adgre5 is involved in regulation of cell growth, migration, and melanomagenesis. Accordingly, we assessed the function of adgre5 alleles from each parental species of the melanoma-bearing hybrids using in vitro cell growth and migration assays. In addition, we expressed each adgre5 allele with the xmrk oncogene in transgenic medaka. We found that cells transfected with the X. birchmanni adgre5 exhibited decreased growth and migration compared to those with the X. malinche allele. Moreover, X. birchmanni allele of adgre5 completely inhibited melanoma development in xmrk-transgenic medaka, while X. malinche adgre5 expression did not exhibit melanoma suppressive activity in medaka. These findings provide evidence that adgre5 is a natural melanoma suppressor and provide new insight in melanoma etiology.
Collapse
Affiliation(s)
| | - Mateus Contar Adolfi
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Brigitta Wilde
- Department of Biochemistry and Cell Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Anita Hufnagel
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Rupesh Paudel
- Department for Dermatology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Yuan Lu
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | | | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas, A.C. 43230 Calnali, Hidalgo, Mexico
- Department of Biology, Università degli Studi di Padova, 35121 Padova, Italy
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Research Department for Limnology, University of Innsbruck, A-5310 Mondsee, Austria
| |
Collapse
|
2
|
Schartl M, Lu Y. Validity of Xiphophorus fish as models for human disease. Dis Model Mech 2024; 17:dmm050382. [PMID: 38299666 PMCID: PMC10855230 DOI: 10.1242/dmm.050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Platyfish and swordtails of the genus Xiphophorus provide a well-established model for melanoma research and have become well known for this feature. Recently, modelling approaches for other human diseases in Xiphophorus have been developed or are emerging. This Review provides a comprehensive summary of these models and discusses how findings from basic biological and molecular studies and their translation to medical research demonstrate that Xiphophorus models have face, construct and predictive validity for studying a broad array of human diseases. These models can thus improve our understanding of disease mechanisms to benefit patients.
Collapse
Affiliation(s)
- Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Developmental Biochemistry, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
3
|
Lu Y, Rice E, Du K, Kneitz S, Naville M, Dechaud C, Volff JN, Boswell M, Boswell W, Hillier L, Tomlinson C, Milin K, Walter RB, Schartl M, Warren WC. High resolution genomes of multiple Xiphophorus species provide new insights into microevolution, hybrid incompatibility, and epistasis. Genome Res 2023; 33:557-571. [PMID: 37147111 PMCID: PMC10234306 DOI: 10.1101/gr.277434.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
Because of diverged adaptative phenotypes, fish species of the genus Xiphophorus have contributed to a wide range of research for a century. Existing Xiphophorus genome assemblies are not at the chromosomal level and are prone to sequence gaps, thus hindering advancement of the intra- and inter-species differences for evolutionary, comparative, and translational biomedical studies. Herein, we assembled high-quality chromosome-level genome assemblies for three distantly related Xiphophorus species, namely, X. maculatus, X. couchianus, and X. hellerii Our overall goal is to precisely assess microevolutionary processes in the clade to ascertain molecular events that led to the divergence of the Xiphophorus species and to progress understanding of genetic incompatibility to disease. In particular, we measured intra- and inter-species divergence and assessed gene expression dysregulation in reciprocal interspecies hybrids among the three species. We found expanded gene families and positively selected genes associated with live bearing, a special mode of reproduction. We also found positively selected gene families are significantly enriched in nonpolymorphic transposable elements, suggesting the dispersal of these nonpolymorphic transposable elements has accompanied the evolution of the genes, possibly by incorporating new regulatory elements in support of the Britten-Davidson hypothesis. We characterized inter-specific polymorphisms, structural variants, and polymorphic transposable element insertions and assessed their association to interspecies hybridization-induced gene expression dysregulation related to specific disease states in humans.
Collapse
Affiliation(s)
- Yuan Lu
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA;
| | - Edward Rice
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Bond Life Sciences Center, Columbia, Missouri 65201, USA
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Mikki Boswell
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Kremitzki Milin
- McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Ronald B Walter
- Department of Life Sciences, Texas A&M University, Corpus Christi, Texas 78412, USA
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
- Developmental Biochemistry, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| | - Wesley C Warren
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Bond Life Sciences Center, Columbia, Missouri 65201, USA
| |
Collapse
|
4
|
Beck EA, Healey HM, Small CM, Currey MC, Desvignes T, Cresko WA, Postlethwait JH. Advancing human disease research with fish evolutionary mutant models. Trends Genet 2022; 38:22-44. [PMID: 34334238 PMCID: PMC8678158 DOI: 10.1016/j.tig.2021.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023]
Abstract
Model organism research is essential to understand disease mechanisms. However, laboratory-induced genetic models can lack genetic variation and often fail to mimic the spectrum of disease severity. Evolutionary mutant models (EMMs) are species with evolved phenotypes that mimic human disease. EMMs complement traditional laboratory models by providing unique avenues to study gene-by-environment interactions, modular mutations in noncoding regions, and their evolved compensations. EMMs have improved our understanding of complex diseases, including cancer, diabetes, and aging, and illuminated mechanisms in many organs. Rapid advancements of sequencing and genome-editing technologies have catapulted the utility of EMMs, particularly in fish. Fish are the most diverse group of vertebrates, exhibiting a kaleidoscope of specialized phenotypes, many that would be pathogenic in humans but are adaptive in the species' specialized habitat. Importantly, evolved compensations can suggest avenues for novel disease therapies. This review summarizes current research using fish EMMs to advance our understanding of human disease.
Collapse
Affiliation(s)
- Emily A Beck
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Hope M Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Clayton M Small
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - William A Cresko
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
5
|
Helmprobst F, Kneitz S, Klotz B, Naville M, Dechaud C, Volff JN, Schartl M. Differential expression of transposable elements in the medaka melanoma model. PLoS One 2021; 16:e0251713. [PMID: 34705830 PMCID: PMC8550402 DOI: 10.1371/journal.pone.0251713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma incidence is rising worldwide. Its treatment in an advanced state is difficult, and the prognosis of this severe disease is still very poor. One major source of these difficulties is the high rate of metastasis and increased genomic instability leading to a high mutation rate and the development of resistance against therapeutic approaches. Here we investigate as one source of genomic instability the contribution of activation of transposable elements (TEs) within the tumor. We used the well-established medaka melanoma model and RNA-sequencing to investigate the differential expression of TEs in wildtype and transgenic fish carrying melanoma. We constructed a medaka-specific TE sequence library and identified TE sequences that were specifically upregulated in tumors. Validation by qRT- PCR confirmed a specific upregulation of a LINE and an LTR element in malignant melanomas of transgenic fish.
Collapse
Affiliation(s)
- Frederik Helmprobst
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
- Department of Neuropathology, Philipps-University Marburg, Marburg, Germany
- * E-mail: (FH); (MS)
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Barbara Klotz
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, United States of America
- Developmental Biochemistry, University of Würzburg, Würzburg, Germany
- * E-mail: (FH); (MS)
| |
Collapse
|
6
|
Monroe JD, Basheer F, Gibert Y. Xmrks the Spot: Fish Models for Investigating Epidermal Growth Factor Receptor Signaling in Cancer Research. Cells 2021; 10:1132. [PMID: 34067095 PMCID: PMC8150686 DOI: 10.3390/cells10051132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Studies conducted in several fish species, e.g., Xiphophorus hellerii (green swordtail) and Xiphophorus maculatus (southern platyfish) crosses, Oryzias latipes (medaka), and Danio rerio (zebrafish), have identified an oncogenic role for the receptor tyrosine kinase, Xmrk, a gene product closely related to the human epidermal growth factor receptor (EGFR), which is associated with a wide variety of pathological conditions, including cancer. Comparative analyses of Xmrk and EGFR signal transduction in melanoma have shown that both utilize STAT5 signaling to regulate apoptosis and cell proliferation, PI3K to modulate apoptosis, FAK to control migration, and the Ras/Raf/MEK/MAPK pathway to regulate cell survival, proliferation, and differentiation. Further, Xmrk and EGFR may also modulate similar chemokine, extracellular matrix, oxidative stress, and microRNA signaling pathways in melanoma. In hepatocellular carcinoma (HCC), Xmrk and EGFR signaling utilize STAT5 to regulate cell proliferation, and Xmrk may signal through PI3K and FasR to modulate apoptosis. At the same time, both activate the Ras/Raf/MEK/MAPK pathway to regulate cell proliferation and E-cadherin signaling. Xmrk models of melanoma have shown that inhibitors of PI3K and MEK have an anti-cancer effect, and in HCC, that the steroidal drug, adrenosterone, can prevent metastasis and recover E-cadherin expression, suggesting that fish Xmrk models can exploit similarities with EGFR signal transduction to identify and study new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jerry D. Monroe
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| | - Faiza Basheer
- School of Medicine, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| |
Collapse
|
7
|
Powell DL, García-Olazábal M, Keegan M, Reilly P, Du K, Díaz-Loyo AP, Banerjee S, Blakkan D, Reich D, Andolfatto P, Rosenthal GG, Schartl M, Schumer M. Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. Science 2020; 368:731-736. [PMID: 32409469 PMCID: PMC8074799 DOI: 10.1126/science.aba5216] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
The establishment of reproductive barriers between populations can fuel the evolution of new species. A genetic framework for this process posits that "incompatible" interactions between genes can evolve that result in reduced survival or reproduction in hybrids. However, progress has been slow in identifying individual genes that underlie hybrid incompatibilities. We used a combination of approaches to map the genes that drive the development of an incompatibility that causes melanoma in swordtail fish hybrids. One of the genes involved in this incompatibility also causes melanoma in hybrids between distantly related species. Moreover, this melanoma reduces survival in the wild, likely because of progressive degradation of the fin. This work identifies genes underlying a vertebrate hybrid incompatibility and provides a glimpse into the action of these genes in natural hybrid populations.
Collapse
Affiliation(s)
- Daniel L Powell
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA.
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Mateo García-Olazábal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Patrick Reilly
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kang Du
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Bavaria, Germany
| | - Alejandra P Díaz-Loyo
- Laboratorio de Ecología de la Conducta, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Shreya Banerjee
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA
| | - Danielle Blakkan
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, and the Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Manfred Schartl
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Bavaria, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
- Xiphophorus Genetic Stock Center, Texas State University San Marcos, San Marcos, TX, USA
| | - Molly Schumer
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
8
|
Expression Signatures of Cisplatin- and Trametinib-Treated Early-Stage Medaka Melanomas. G3-GENES GENOMES GENETICS 2019; 9:2267-2276. [PMID: 31101653 PMCID: PMC6643878 DOI: 10.1534/g3.119.400051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small aquarium fish models provide useful systems not only for a better understanding of the molecular basis of many human diseases, but also for first-line screening to identify new drug candidates. For testing new chemical substances, current strategies mostly rely on easy to perform and efficient embryonic screens. Cancer, however, is a disease that develops mainly during juvenile and adult stage. Long-term treatment and the challenge to monitor changes in tumor phenotype make testing of large chemical libraries in juvenile and adult animals cost prohibitive. We hypothesized that changes in the gene expression profile should occur early during anti-tumor treatment, and the disease-associated transcriptional change should provide a reliable readout that can be utilized to evaluate drug-induced effects. For the current study, we used a previously established medaka melanoma model. As proof of principle, we showed that exposure of melanoma developing fish to the drugs cisplatin or trametinib, known cancer therapies, for a period of seven days is sufficient to detect treatment-induced changes in gene expression. By examining whole body transcriptome responses we provide a novel route toward gene panels that recapitulate anti-tumor outcomes thus allowing a screening of thousands of drugs using a whole-body vertebrate model. Our results suggest that using disease-associated transcriptional change to screen therapeutic molecules in small fish model is viable and may be applied to pre-clinical research and development stages in new drug discovery.
Collapse
|
9
|
Lu Y, Boswell W, Boswell M, Klotz B, Kneitz S, Regneri J, Savage M, Mendoza C, Postlethwait J, Warren WC, Schartl M, Walter RB. Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model. Sci Rep 2019; 9:530. [PMID: 30679619 PMCID: PMC6345854 DOI: 10.1038/s41598-018-36656-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Cell culture and protein target-based compound screening strategies, though broadly utilized in selecting candidate compounds, often fail to eliminate candidate compounds with non-target effects and/or safety concerns until late in the drug developmental process. Phenotype screening using intact research animals is attractive because it can help identify small molecule candidate compounds that have a high probability of proceeding to clinical use. Most FDA approved, first-in-class small molecules were identified from phenotypic screening. However, phenotypic screening using rodent models is labor intensive, low-throughput, and very expensive. As a novel alternative for small molecule screening, we have been developing gene expression disease profiles, termed the Transcriptional Disease Signature (TDS), as readout of small molecule screens for therapeutic molecules. In this concept, compounds that can reverse, or otherwise affect known disease-associated gene expression patterns in whole animals may be rapidly identified for more detailed downstream direct testing of their efficacy and mode of action. To establish proof of concept for this screening strategy, we employed a transgenic strain of a small aquarium fish, medaka (Oryzias latipes), that overexpresses the malignant melanoma driver gene xmrk, a mutant egfr gene, that is driven by a pigment cell-specific mitf promoter. In this model, melanoma develops with 100% penetrance. Using the transgenic medaka malignant melanoma model, we established a screening system that employs the NanoString nCounter platform to quantify gene expression within custom sets of TDS gene targets that we had previously shown to exhibit differential transcription among xmrk-transgenic and wild-type medaka. Compound-modulated gene expression was identified using an internet-accessible custom-built data processing pipeline. The effect of a given drug on the entire TDS profile was estimated by comparing compound-modulated genes in the TDS using an activation Z-score and Kolmogorov-Smirnov statistics. TDS gene probes were designed that target common signaling pathways that include proliferation, development, toxicity, immune function, metabolism and detoxification. These pathways may be utilized to evaluate candidate compounds for potential favorable, or unfavorable, effects on melanoma-associated gene expression. Here we present the logistics of using medaka to screen compounds, as well as, the development of a user-friendly NanoString data analysis pipeline to support feasibility of this novel TDS drug-screening strategy.
Collapse
Affiliation(s)
- Yuan Lu
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - William Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Mikki Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Barbara Klotz
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Susanne Kneitz
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Janine Regneri
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Markita Savage
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Cristina Mendoza
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | | | - Manfred Schartl
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, USA
| | - Ronald B Walter
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA.
| |
Collapse
|