1
|
Torre M, Zanella CA, Feany MB. The Biological Intersection Between Chemotherapy-Related Cognitive Impairment and Alzheimer Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00026-4. [PMID: 39863251 DOI: 10.1016/j.ajpath.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Alzheimer disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority. In parallel with the number of patients with AD, the number of cancer survivors is estimated to increase significantly, and up to 80% of cancer patients treated with chemotherapy will develop cognitive deficits, termed chemotherapy-related cognitive impairment. This review discusses biologically plausible pathways underlying both disorders, with the goal of understanding why a proportion of chemotherapy patients may be at higher risk of developing AD. Highlighted are the E4 allele of the apolipoprotein E gene, neuroinflammation, oxidative stress, DNA damage, mitochondrial dysfunction, neuronal and synaptic loss, cellular senescence, brain-derived neurotrophic factor signaling, white matter damage, blood-brain barrier/vascular dysfunction, tau pathology, and transposable element reactivation.
Collapse
Affiliation(s)
- Matthew Torre
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas.
| | - Camila A Zanella
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Torre M, Bukhari H, Nithianandam V, Zanella CA, Mata DA, Feany MB. A Drosophila model relevant to chemotherapy-related cognitive impairment. Sci Rep 2023; 13:19290. [PMID: 37935827 PMCID: PMC10630312 DOI: 10.1038/s41598-023-46616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Chemotherapy-related cognitive impairment (CRCI) is a common adverse effect of treatment and is characterized by deficits involving multiple cognitive domains including memory. Despite the significant morbidity of CRCI and the expected increase in cancer survivors over the coming decades, the pathophysiology of CRCI remains incompletely understood, highlighting the need for new model systems to study CRCI. Given the powerful array of genetic approaches and facile high throughput screening ability in Drosophila, our goal was to validate a Drosophila model relevant to CRCI. We administered the chemotherapeutic agents cisplatin, cyclophosphamide, and doxorubicin to adult Drosophila. Neurologic deficits were observed with all tested chemotherapies, with doxorubicin and in particular cisplatin also resulting in memory deficits. We then performed histologic and immunohistochemical analysis of cisplatin-treated Drosophila tissue, demonstrating neuropathologic evidence of increased neurodegeneration, DNA damage, and oxidative stress. Thus, our Drosophila model relevant to CRCI recapitulates clinical, radiologic, and histologic alterations reported in chemotherapy patients. Our new Drosophila model can be used for mechanistic dissection of pathways contributing to CRCI (and chemotherapy-induced neurotoxicity more generally) and pharmacologic screens to identify disease-modifying therapies.
Collapse
Affiliation(s)
- Matthew Torre
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Hassan Bukhari
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Camila A Zanella
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | | | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Torre M, Bukhari H, Nithianandam V, Zanella CA, Mata DA, Feany MB. A Drosophila model of chemotherapy-related cognitive impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543297. [PMID: 37333281 PMCID: PMC10274738 DOI: 10.1101/2023.06.01.543297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemotherapy-related cognitive impairment (CRCI) is a common adverse effect of treatment and is characterized by deficits involving multiple cognitive domains including memory. Despite the significant morbidity of CRCI and the expected increase in cancer survivors over the coming decades, the pathophysiology of CRCI remains incompletely understood, highlighting the need for new model systems to study CRCI. Given the powerful array of genetic approaches and facile high throughput screening ability in Drosophila, our goal was to validate a Drosophila model of CRCI. We administered the chemotherapeutic agents cisplatin, cyclophosphamide, and doxorubicin to adult Drosophila. Neurocognitive deficits were observed with all tested chemotherapies, especially cisplatin. We then performed histologic and immunohistochemical analysis of cisplatin-treated Drosophila tissue, demonstrating neuropathologic evidence of increased neurodegeneration, DNA damage, and oxidative stress. Thus, our Drosophila model of CRCI recapitulates clinical, radiologic, and histologic alterations reported in chemotherapy patients. Our new Drosophila model can be used for mechanistic dissection of pathways contributing to CRCI and pharmacologic screens to identify novel therapies to ameliorate CRCI.
Collapse
Affiliation(s)
- Matthew Torre
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Hassan Bukhari
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Camila A Zanella
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | - Mel B Feany
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Pezenti LF, Dionisio JF, Sosa-Gómez DR, de Souza RF, da Rosa R. Transposable elements in the transcriptome of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae). Genome 2023. [DOI: 10.1139/gen-2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis ( Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.
Collapse
|
5
|
Bernardt TM, Treviso EM, Cancian M, Silva MDM, da Rocha JBT, Loreto ELS. Chemotherapy Drugs Act Differently in the Expression and Somatic Mobilization of the mariner Transposable Element in Drosophila simulans. Genes (Basel) 2022; 13:genes13122374. [PMID: 36553641 PMCID: PMC9777735 DOI: 10.3390/genes13122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Transposable elements (TEs) are abundant in genomes. Their mobilization can lead to genetic variability that is useful for evolution, but can also have deleterious biological effects. Somatic mobilization (SM) has been linked to degenerative diseases, such as Alzheimer's disease and cancer. We used a Drosophila simulans strain, in which SM can be measured by counting red spots in the eyes, to investigate how chemotherapeutic agents affect expression and SM of the mariner TE. Flies were treated with Cisplatin, Dacarbazine, and Daunorubicin. After acute exposure, relative expression of mariner was quantified by RT-qPCR and oxidative stress was measured by biochemical assays. Exposure to 50 and 100 µg/mL Cisplatin increased mariner expression and ROS levels; catalase activity increased at 100 µg/mL. With chronic exposure, the number of spots also increased, indicating higher mariner SM. Dacarbazine (50 and 100 µg/mL) did not significantly alter mariner expression or mobilization or ROS levels, but decreased catalase activity (100 µg/mL). Daunorubicin (25 and 50 µM) increased mariner expression, but decreased mariner SM. ROS and catalase activity were also reduced. Our data suggest that stress factors may differentially affect the expression and SM of TEs. The increase in mariner transposase gene expression is necessary, but not sufficient for mariner SM.
Collapse
Affiliation(s)
- Taís Maus Bernardt
- Biological Sciences, Federal University of Santa Maria (UFSM), Santa Maria 97105-000, RS, Brazil
| | - Estéfani Maria Treviso
- Biological Sciences, Federal University of Santa Maria (UFSM), Santa Maria 97105-000, RS, Brazil
| | - Mariana Cancian
- Genetic and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Monica de Medeiros Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Av. Roraima 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - João Batista Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Av. Roraima 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Elgion Lucio Silva Loreto
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Av. Roraima 1000, Camobi, Santa Maria 97105-900, RS, Brazil
- Correspondence:
| |
Collapse
|
6
|
Mombach DM, da Fontoura Gomes TMF, Loreto ELS. Stress does not induce a general transcription of transposable elements in Drosophila. Mol Biol Rep 2022; 49:9033-9040. [PMID: 35980533 DOI: 10.1007/s11033-022-07839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Transposable elements, also known as "jumping genes," have the ability to hop within the host genome. Nonetheless, this capacity is kept in check by the host cell defense systems to avoid unbridled TE mobilization. Different types of stressors can activate TEs in Drosophila, suggesting that TEs may play an adaptive role in the stress response, especially in generating genetic variability for adaptive evolution. TE activation by stressors may also lead to the notion, usually found in the literature, that any form of stress could activate all or the majority of TEs. In this review, we define what stress is. We then present and discuss RNA sequencing results from several studies demonstrating that stress does not trigger TE transcription broadly in Drosophila. An explanation for the LTR order of TEs being the most overexpressed is also proposed.
Collapse
Affiliation(s)
- Daniela Moreira Mombach
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Elgion Lucio Silva Loreto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, 97105900, Brazil.
| |
Collapse
|
7
|
de Oliveira DS, Rosa MT, Vieira C, Loreto ELS. Oxidative and radiation stress induces transposable element transcription in Drosophila melanogaster. J Evol Biol 2021; 34:628-638. [PMID: 33484011 DOI: 10.1111/jeb.13762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/27/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022]
Abstract
It has been shown that stressors are capable of activating transposable elements (TEs). Currently, there is a hypothesis that stress activation of TEs may be involved in adaptive evolution, favouring the increase in genetic variability when the population is under adverse conditions. However, TE activation under stress is still poorly understood. In the present study, we estimated the fraction of differentially expressed TEs (DETEs) under ionizing radiation (144, 360 and 864 Gy) and oxidative stress (dioxin, formaldehyde and toluene) treatments. The stress intensity of each treatment was estimated by measuring the number of differentially expressed genes, and we show that several TEs families are activated by stress whereas others are repressed. The proportion of DETEs was positively related to stress intensity. However, even under the strongest stress, only a small fraction of TE families were activated (9.28%) and 17.72% were repressed. Considering all treatments together, the activated proportion was 19.83%. Nevertheless, as several TEs are incomplete or degenerated, only 10.55% of D. melanogaster mobilome is, at same time, activated by the stressors and able to transpose or at least code a protein. Thus, our study points out that although stress activates TEs, it is not a generalized activation process, and for some families, the stress induces repression.
Collapse
Affiliation(s)
- Daniel Siqueira de Oliveira
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, 1- Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Marcos Trindade Rosa
- PPG Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, 1- Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Elgion L S Loreto
- Dep de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|