1
|
Alexander MV, Ayyar A, Gannon AW, Linares KE, Vincent SJ, Lowe S, To A, Blesson CS. The biological effects of bisphenol AF in reproduction and development: What do we know so far? Reprod Toxicol 2025; 132:108857. [PMID: 39954826 DOI: 10.1016/j.reprotox.2025.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Due to the established endocrine-disrupting effects of Bisphenol A (BPA), alternative bisphenols entered the market. Bisphenol AF (BPAF) is now commonly used in the industrial manufacturing of polycarbonate plastics and epoxy resins. However, BPAF's effects on reproduction and development have not been thoroughly reviewed. We investigated the relationship between BPAF exposure and reproduction and early development. We performed a literature review of studies on BPAF and reproductive physiology. Using keywords, we searched PubMed, Medline, Cochrane Library Database, Embase, and ClinicalTrials.gov for English language literature available until December 2024; we additionally identified and included studies from bibliographies. We included 125 articles, spanning in vitro and in vivo model organism and human studies. BPAF is a selective estrogen receptor modulator and an androgen receptor antagonist and is more potent than BPA. It is detected in urine, blood products, saliva, amniotic fluid, and breast milk. In vitro and in vivo studies demonstrate a spectrum of BPAF-induced endocrine and reproductive changes in both sexes. There is strong evidence of alterations in the hypothalamic-pituitary-gonadal axis and of altered steroidogenesis pathways. Multiple studies using zebrafish, Xenopus, chickens, and rodents, show BPAF's effects on embryogenesis, morphology, and sexual differentiation. Decreased serum testosterone and impaired spermatogenesis and oocyte viability have been demonstrated. The current literature shows clear disruptive effects of BPAF on reproductive health and embryonic development. Though further investigation is warranted, there is ample converging evidence to support limiting the use of BPAF and other similar bisphenols.
Collapse
Affiliation(s)
- Megan V Alexander
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Archana Ayyar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandra W Gannon
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | - Alvin To
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chellakkan S Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Morshead ML, Tanguay RL. Advancements in the Developmental Zebrafish Model for Predictive Human Toxicology. CURRENT OPINION IN TOXICOLOGY 2025; 41:100516. [PMID: 39897714 PMCID: PMC11780918 DOI: 10.1016/j.cotox.2024.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The rapid assessment of chemical hazards to human health, with reduced reliance on mammalian testing, is essential in the 21st century. Early life stage zebrafish have emerged as a leading model in the field due to their amenability to high throughput developmental toxicity testing while retaining the benefits of using a whole vertebrate organism with high homology with humans. Zebrafish are particularly well suited for a variety of study areas that are more challenging in other vertebrate model systems including microbiome work, transgenerational studies, gene-environment interactions, molecular responses, and mechanisms of action. The high volume of data generated from zebrafish screening studies is highly valuable for QSAR modeling and dose modeling for use in predictive hazard assessment. Recent advancements and challenges in using early life stage zebrafish for predictive human toxicology are reviewed.
Collapse
Affiliation(s)
- Mackenzie L. Morshead
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University 28645 East Highway 34, Corvallis, OR 97331, USA
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University 28645 East Highway 34, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
Morash MG, Kirzinger MW, Achenbach JC, Venkatachalam AB, Nixon J, Penny S, Cooper JP, Ratzlaff DE, Woodland CLA, Ellis LD. Comparative toxicological assessment of 2 bisphenols using a systems approach: evaluation of the behavioral and transcriptomic responses of Danio rerio to bisphenol A and tetrabromobisphenol A. Toxicol Sci 2024; 200:394-403. [PMID: 38730555 DOI: 10.1093/toxsci/kfae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
The zebrafish (Danio rerio) is becoming a critical component of new approach methods (NAMs) in chemical risk assessment. As a whole organism in vitro NAM, the zebrafish model offers significant advantages over individual cell-line testing, including toxicokinetic and toxicodynamic competencies. A transcriptomic approach not only allows for insight into mechanism of action for both apical endpoints and unobservable adverse outcomes, but also changes in gene expression induced by lower, environmentally relevant concentrations. In this study, we used a larval zebrafish model to assess the behavioral and transcriptomic alterations caused by subphenotypic concentrations of 2 chemicals with the same structural backbone, the endocrine-disrupting chemicals bisphenol A and tetrabromobisphenol A. Following assessment of behavioral toxicity, we used a transcriptomic approach to identify molecular pathways associated with previously described phenotypes. We also determined the transcriptomic point of departure for each chemical by modeling gene expression changes as continuous systems which allows for the identification of a single concentration at which toxic effects can be predicted. This can then be investigated with confirmatory cell-based testing in an integrated approach to testing and assessment to determine risk to human health and the environment with greater confidence. This paper demonstrates the impact of using a multi-faceted approach for evaluating the physiological and neurotoxic effects of exposure to structurally related chemicals. By comparing phenotypic effects with transcriptomic outcomes, we were able to differentiate, characterize, and rank the toxicities of related bisphenols, which demonstrates methodological advantages unique to the larval zebrafish NAM.
Collapse
Affiliation(s)
- Michael G Morash
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Morgan W Kirzinger
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada
| | - John C Achenbach
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Ananda B Venkatachalam
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Jessica Nixon
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Susanne Penny
- Human Health and Therapeutics, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | | | - Deborah E Ratzlaff
- New Substances Assessment and Control Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Cindy L A Woodland
- New Substances Assessment and Control Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Lee D Ellis
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
4
|
van den Brand AD, Hessel EVS, Rijk R, van de Ven B, Leijten NM, Rorije E, den Braver-Sewradj SP. A prioritization strategy for functional alternatives to bisphenol A in food contact materials. Crit Rev Toxicol 2024; 54:291-314. [PMID: 38726570 DOI: 10.1080/10408444.2024.2341020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 06/09/2024]
Abstract
The use of bisphenol A (BPA), a substance of very high concern, is proposed to be banned in food contact materials (FCMs) in the European Union. To prevent regrettable substitution of BPA by alternatives with similar or unknown hazardous properties, it is of importance to gain the relevant toxicological information on potential BPA alternative substances and monitor them adequately. We created an inventory of over 300 substances mentioned as potential BPA alternatives in regulatory reports and scientific literature. This study presents a prioritization strategy to identify substances that may be used as an alternative to BPA in FCMs. We prioritized 20 potential BPA alternatives of which 10 are less familiar. We subsequently reviewed the available information on the 10 prioritized less familiar substances regarding hazard profiles and migration potential obtained from scientific literature and in silico screening tools to identify a possible risk of the substances. Major data gaps regarding the hazard profiles of the prioritized substances exist, although the scarce available data give some indications on the possible hazard for some of the substances (like bisphenol TMC, 4,4-dihydroxybenzophenone, and tetrachlorobisphenol A). In addition, very little is known about the actual use and exposure to these substances. More toxicological research and monitoring of these substances in FCMs are, therefore, required to avoid regrettable substitution of BPA in FCM.
Collapse
Affiliation(s)
- Annick D van den Brand
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Bianca van de Ven
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Niels M Leijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Shalenie P den Braver-Sewradj
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
5
|
Ahmed RYS, Tanoue R, Chen X, Kawai YK, Kubota A. Assessment of developmental toxicity and the potential mode of action underlying single and binary exposure to estrogenic endocrine disrupting chemicals in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109821. [PMID: 38128895 DOI: 10.1016/j.cbpc.2023.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The current study investigated the effect of single and binary exposure to distinct xenoestrogens, including diethylstilbestrol (DES) and zearalenone (ZEN), on zebrafish embryos subjected to continuous exposure for 4 days starting from 4 h post fertilization. Noteworthy impact on cumulative mortality, hatchability, spinal and tail curvature, pericardial edema, and reduction in blood circulation were observed in DES-treated embryos, with lower incidence and intensity shown for ZEN at the same nominal concentration (3 μM). An interactive effect was seen for the combined exposure to DES and ZEN, in which deformities and circulatory failure mediated by DES were mitigated by co-treatment with low concentrations of ZEN. Similarly, ZEN-induced spinal and tail curvature, pericardial edema, and blood flow reduction declined dramatically following DES co-exposure at low concentrations. A significant counteracting effect has been observed against DES- and ZEN-induced developmental anomalies following co-treatment with an estrogen receptor (ER) antagonist, fulvestrant (FUL). The assessment of the aromatase gene (CYP19A1b) showed that DES strongly upregulated mRNA expression of CYP19A1b with a lower EC50 (1.1 × 10-3 nM) than a natural estrogen, 17β-estradiol (2.5 nM). Similarly, ZEN induced CYP19A1b mRNA expression with an EC50 of 57 nM. Exposure to 10 or 20 μM FUL inhibited the expression of CYP19A1b induced by a single treatment of DES or ZEN. Overall, the competitive action against ER could be the main mechanism underlying the developmental toxicity induced by DES and ZEN.
Collapse
Affiliation(s)
- Rehab Youssef Salama Ahmed
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Poultry Diseases, Veterinary Medicine, Aswan University, Aswan 097-81528, Egypt
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Xing Chen
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yusuke K Kawai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Akira Kubota
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
6
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|