1
|
Sabi EM. The role of genetic and epigenetic modifications as potential biomarkers in the diagnosis and prognosis of thyroid cancer. Front Oncol 2024; 14:1474267. [PMID: 39558949 PMCID: PMC11570407 DOI: 10.3389/fonc.2024.1474267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Thyroid cancer (TC) is the most common endocrine cancer, which contributes to more than 43,600 deaths and 586,000 cases worldwide every year. Among the TC types, PTC and FTC comprise 90% of all TCs. Genetic modifications in genes are responsible for encoding proteins of mitogen-associated protein kinase cascade, which is closely related with numerous cellular mechanisms, including controlling programmed cell death, differentiation, proliferation, gene expression, as well as in genes encoding the PI3K (phosphatidylinositol 3-kinase)/protein kinase B (AKT) cascade, which has contribution in controlling cell motility, adhesion, survival, and glucose metabolism, have been associated with the TC pathogenesis. Various genetic modifications including BRAF mutations, RAS mutations, RET mutations, paired-box gene 8/peroxisome proliferator-activated receptor-gamma fusion oncogene, RET/PTC rearrangements, telomerase reverse transcriptase mutations, neurotrophic tyrosine receptor kinase fusion genes, TP53 mutations, and eukaryotic translation initiation factor 1A X-linked mutations can effectively serve as potential biomarkers in both diagnosis and prognosis of TC. On the other hand, epigenetic modifications can lead to aberrant functions or suppression of a range of signalling cascades, which can ultimately result in cancer. Various studies have observed the link between epigenetic modification and multiple cancers including TC. It has been reported that several epigenetic alterations including histone modifications, aberrant DNA methylation, and epigenetic modulations of non-coding RNAs can play significant roles as potential biomarkers in the diagnosis and prognosis of TC. Therefore, a good understanding regarding the genetic and epigenetic modifications is not only essential for the diagnosis and prognosis of TC, but also for the development of novel therapeutics. In this review, most of the major TC-related genetic and epigenetic modifications and their potential as biomarkers for TC diagnosis and prognosis have been extensively discussed.
Collapse
Affiliation(s)
- Essa M. Sabi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Genetic Changes in Thyroid Cancers and the Importance of Their Preoperative Detection in Relation to the General Treatment and Determination of the Extent of Surgical Intervention—A Review. Biomedicines 2022; 10:biomedicines10071515. [PMID: 35884820 PMCID: PMC9312840 DOI: 10.3390/biomedicines10071515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Carcinomas of the thyroid gland are some of the most common malignancies of the endocrine system. The causes of tumor transformation are genetic changes in genes encoding cell signaling pathways that lead to an imbalance between cell proliferation and apoptosis. Some mutations have been associated with increased tumor aggressiveness, metastatic lymph node spread, tendency to dedifferentiate, and/or reduced efficiency of radioiodine therapy. The main known genetic causes of thyroid cancer include point mutations in the BRAF, RAS, TERT, RET, and TP53 genes and the fusion genes RET/PTC, PAX8/PPAR-γ, and NTRK. Molecular genetic testing of the fine needle aspiration cytology of the thyroid tissue in the preoperative period or of the removed thyroid tissue in the postoperative period is becoming more and more common in selected institutions. Positive detection of genetic changes, thus, becomes a diagnostic and prognostic factor and a factor that determines the extent of the surgical and nonsurgical treatment. The findings of genetic research on thyroid cancer are now beginning to be applied to clinical practice. In preoperative molecular diagnostics, the aggressiveness of cancers with the most frequently occurring mutations is correlated with the extent of the planned surgical treatment (radicality of surgery, neck dissection, etc.). However, clear algorithms are not established for the majority of genetic alterations. This review aims to provide a basic overview of the findings of the most commonly occurring gene mutations in thyroid cancer and to discuss the current recommendations on the extent of surgical and biological treatment concerning preoperatively detected genetic changes.
Collapse
|
3
|
Calcaterra V, Mameli C, Rossi V, Massini G, Gambino M, Baldassarre P, Zuccotti G. The Iodine Rush: Over- or Under-Iodination Risk in the Prophylactic Use of Iodine for Thyroid Blocking in the Event of a Nuclear Disaster. Front Endocrinol (Lausanne) 2022; 13:901620. [PMID: 35692388 PMCID: PMC9178126 DOI: 10.3389/fendo.2022.901620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Iodine is an essential element for the production of thyroid hormones (THs). Both deficient and excess iodine intakes may precipitate in adverse thyroidal events. Radioactive iodine (RI) is a common byproduct of nuclear fission processes. During nuclear emergencies RI may be released in a plume, or cloud, contaminating the environment. If inhaled or ingested, it may lead to internal radiation exposure and the uptake of RI mainly by the thyroid gland that absorbs stable iodine (SI) and RI in the same way. A dose of radiation delivered to the thyroid gland is a main risk factor for the thyroid cancer development. The SI prophylaxis helps prevent childhood thyroid cancer. The thyroid gland saturation with prophylactic SI ingestion, reduces the internal exposure of the thyroid by blocking the uptake of RI and inhibiting iodide organification. However, negative impact of inadequate SI intake must be considered. We provide an overview on the recommended iodine intake and the impact of SI and RI on thyroid in children and adolescents, discussing the benefits and adverse effects of the prophylactic SI for thyroid blocking during a nuclear accident. The use of SI for protection against RI may be recommended in cases of radiological or nuclear emergencies, moreover the administration of iodine for prophylactic purposes should be cautious. Benefits and risks should also be considered according to age. Adverse effects from iodine administration cannot be excluded. Precise indications are mandatory to use the iodine for thyroid blocking. Due to this natural adaption mechanism it's possible to tolerate large doses of iodine without clinical effects, however, a prolonged assumption of the iodine when not needed can be dangerous and may precipitate in severe thyroidal and non-thyroidal negative effects.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Valeria Calcaterra,
| | - Chiara Mameli
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Virginia Rossi
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Giulia Massini
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Mirko Gambino
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Paola Baldassarre
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Sun T, Guan Q, Wang Y, Qian K, Sun W, Ji Q, Wu Y, Guo K, Xiang J. Identification of differentially expressed genes and signaling pathways in papillary thyroid cancer: a study based on integrated microarray and bioinformatics analysis. Gland Surg 2021; 10:629-644. [PMID: 33708546 DOI: 10.21037/gs-20-673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The techniques of DNA microarray and bioinformatic analysis have exhibited efficiency in identifying dysregulated gene expression in human cancers. In this study, we used integrated bioinformatics analysis to improve our understanding of the pathogenesis of papillary thyroid cancer (PTC). Methods In this study, we integrated four Gene Expression Omnibus (GEO) datasets, GSE33630, GSE35570, GSE60542 and GSE29265, including 136 normal samples and 157 PTC specimens. The contents of the four datasets are based on GPL570, an Affymetrix Human Genome U133 Plus 2.0 array. Gene ontology (GO) analysis was used to identify characteristic the biological attributes of differentially expressed genes (DEGs) between PTC and normal samples. GO annotation was performed on the DEGs obtained, and the process relied on the DAVID online tool. Kyoto Encyclopedia of Genes and Genomes (KEGG) approach enrichment analyses were adopted to obtain the basic functions of the DEGs. The KOBAS online analysis database was used to complete DEG KEGG pathway comparison and analysis. The search tool (STRING) database was mainly used to search for interacting genes and complete the construction of protein-protein interaction (PPI) networks. Results Five hundred-ninety DEGs were consistently expressed in the four datasets; 327 of them were upregulated, while 263 were downregulated. Ten DEGs, including five upregulated (ENTPD1, THRSP, KLK10, ADAMTS9, MIR31HG) and five downregulated (SCARA5, EPHB1, CHRDL1, LOC440934, FOXP2) genes, were randomly selected for q-PCR in our own tissue samples to validate the integrated data. The most highly enriched GO terms were extracellular exosome (GO:0070062), cell adhesion (GO:0070062), positive regulation of gene expression (GO:0010628), and extracellular matrix (ECM) organization (GO:0030198). KEGG pathway analysis was performed, and it was found that abnormally expressed genes effectively participated in pathways such as tyrosine metabolism, complement and coagulation cascades, cell adhesion molecules (CAMs), transcriptional misregulation and ECM-receptor interaction pathways. Conclusions Five hundred-ninety DEGs were identified in PTC by integrated microarray analysis. The GO and KEGG analyses presented here suggest that the DEGs were enriched in extracellular exosome, tyrosine metabolism, CAMs, complement and coagulation cascades, transcriptional misregulation and ECM-receptor interaction pathways. Functional studies of PTC should focus on these pathways.
Collapse
Affiliation(s)
- Tuanqi Sun
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Qian
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenyu Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Guo
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Radiation-Induced Thyroid Cancers: Overview of Molecular Signatures. Cancers (Basel) 2019; 11:cancers11091290. [PMID: 31480712 PMCID: PMC6770066 DOI: 10.3390/cancers11091290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/25/2022] Open
Abstract
Enormous amounts of childhood thyroid cancers, mostly childhood papillary thyroid carcinomas (PTCs), after the Chernobyl nuclear power plant accident have revealed a mutual relationship between the radiation exposure and thyroid cancer development. While the internal exposure to radioactive 131I is involved in the childhood thyroid cancers after the Chernobyl accident, people exposed to the external radiation, such as atomic-bomb (A-bomb) survivors, and the patients who received radiation therapy, have also been epidemiologically demonstrated to develop thyroid cancers. In order to elucidate the mechanisms of radiation-induced carcinogenesis, studies have aimed at defining the molecular changes associated with the thyroid cancer development. Here, we overview the literatures towards the identification of oncogenic alterations, particularly gene rearrangements, and discuss the existence of radiation signatures associated with radiation-induced thyroid cancers.
Collapse
|
6
|
Ribeiro IP, Rodrigues JM, Mascarenhas A, Kosyakova N, Caramelo F, Liehr T, Melo JB, Carreira IM. Cytogenetic, genomic, and epigenetic characterization of the HSC-3 tongue cell line with lymph node metastasis. J Oral Sci 2018; 60:70-81. [PMID: 29479029 DOI: 10.2334/josnusd.16-0811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Oral carcinoma develops from squamous epithelial cells by the acquisition of multiple (epi) genetic alterations that target different genes and molecular pathways. Herein, we performed a comprehensive genomic and epigenetic characterization of the HSC-3 cell line through karyotyping, multicolor fluorescence in situ hybridization, array comparative genomic hybridization, and methylation-specific multiplex ligation-dependent probe amplification. HSC-3 turned out to be a near-triploid cell line with a modal number of 61 chromosomes. Banding and molecular cytogenetic analyses revealed that nonrandom gains of chromosomal segments occurred more frequently than losses. Overall, gains of chromosome 1, 3q, 5p, 7p, 8q, 9q, 10, 11p, 11q13, 12, 13, 14, 17, 18p, 20, Yp, and Xq were observed. The largest region affected by copy number loss was observed at chromosome 18q. Several of the observed genomic imbalances and their mapped genes were already associated with oral carcinoma and/or adverse prognosis, invasion, and metastasis in cancer. The most common rearrangements observed were translocations in the centromeric/near-centromeric regions. RARB, ESR1, and CADM1 genes were methylated and showed copy number losses, whereas TP73 and GATA5 presented with methylation and copy number gains. Thus, the current study presents a comprehensive characterization of the HSC-3 cell line; the use of this cell line may contribute to enriching the resources available for oral cancer research, especially for the testing of therapeutic agents.
Collapse
Affiliation(s)
- Ilda P Ribeiro
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra.,Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra
| | - Joana M Rodrigues
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra
| | | | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University
| | - Joana B Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra.,Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra
| | - Isabel M Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra.,Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra
| |
Collapse
|
7
|
Kaiser JC, Meckbach R, Eidemüller M, Selmansberger M, Unger K, Shpak V, Blettner M, Zitzelsberger H, Jacob P. Integration of a radiation biomarker into modeling of thyroid carcinogenesis and post-Chernobyl risk assessment. Carcinogenesis 2016; 37:1152-1160. [PMID: 27729373 PMCID: PMC5137265 DOI: 10.1093/carcin/bgw102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/20/2016] [Accepted: 10/10/2016] [Indexed: 01/18/2023] Open
Abstract
Strong evidence for the statistical association between radiation exposure and disease has been produced for thyroid cancer by epidemiological studies after the Chernobyl accident. However, limitations of the epidemiological approach in order to explore health risks especially at low doses of radiation appear obvious. Statistical fluctuations due to small case numbers dominate the uncertainty of risk estimates. Molecular radiation markers have been searched extensively to separate radiation-induced cancer cases from sporadic cases. The overexpression of the CLIP2 gene is the most promising of these markers. It was found in the majority of papillary thyroid cancers (PTCs) from young patients included in the Chernobyl tissue bank. Motivated by the CLIP2 findings we propose a mechanistic model which describes PTC development as a sequence of rate-limiting events in two distinct paths of CLIP2-associated and multistage carcinogenesis. It integrates molecular measurements of the dichotomous CLIP2 marker from 141 patients into the epidemiological risk analysis for about 13 000 subjects from the Ukrainian-American cohort which were exposed below age 19 years and were put under enhanced medical surveillance since 1998. For the first time, a radiation risk has been estimated solely from marker measurements. Cross checking with epidemiological estimates and model validation suggests that CLIP2 is a marker of high precision. CLIP2 leaves an imprint in the epidemiological incidence data which is typical for a driver gene. With the mechanistic model, we explore the impact of radiation on the molecular landscape of PTC. The model constitutes a unique interface between molecular biology and radiation epidemiology.
Collapse
Affiliation(s)
- Jan Christian Kaiser
- *To whom correspondence should be addressed. Tel: +49 8931874028; Fax: +49 31873363
| | | | - Markus Eidemüller
- Institute of Radiation Protection, Helmholtz Zentrum München, 85764 Oberschleißheim, Germany
- Boris-Blacher-Str. 14, 80939 München, Germany
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, 85764 Neuherberg, Germany
- National Academy of Medical Sciences of the Ukraine, Institute of Endocrinology and Metabolism, 254114 Kyiv, Ukraine
- Johannes Gutenberg Universität, Institut für Medizinische Biometrie Epidemiologie und Informatik, 55131 Mainz, Germany and
- RADRISK, 83727 Schliersee, Germany
| | - Martin Selmansberger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, 85764 Neuherberg, Germany
| | - Kristian Unger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, 85764 Neuherberg, Germany
| | - Viktor Shpak
- National Academy of Medical Sciences of the Ukraine, Institute of Endocrinology and Metabolism, 254114 Kyiv, Ukraine
| | - Maria Blettner
- Johannes Gutenberg Universität, Institut für Medizinische Biometrie Epidemiologie und Informatik, 55131 Mainz, Germany and
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, 85764 Neuherberg, Germany
| | | |
Collapse
|
8
|
Suzuki K, Mitsutake N, Saenko V, Yamashita S. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis. Cancer Sci 2015; 106:127-33. [PMID: 25483826 PMCID: PMC4399027 DOI: 10.1111/cas.12583] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 12/11/2022] Open
Abstract
After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | | | | | | |
Collapse
|
9
|
Morgensztern D, Campo MJ, Dahlberg SE, Doebele RC, Garon E, Gerber DE, Goldberg SB, Hammerman PS, Heist R, Hensing T, Horn L, Ramalingam SS, Rudin CM, Salgia R, Sequist L, Shaw AT, Simon GR, Somaiah N, Spigel DR, Wrangle J, Johnson D, Herbst RS, Bunn P, Govindan R. Molecularly targeted therapies in non-small-cell lung cancer annual update 2014. J Thorac Oncol 2015; 10:S1-63. [PMID: 25535693 PMCID: PMC4346098 DOI: 10.1097/jto.0000000000000405] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There have been significant advances in the understanding of the biology and treatment of non-small-cell lung cancer (NSCLC) during the past few years. A number of molecularly targeted agents are in the clinic or in development for patients with advanced NSCLC. We are beginning to understand the mechanisms of acquired resistance after exposure to tyrosine kinase inhibitors in patients with oncogene addicted NSCLC. The advent of next-generation sequencing has enabled to study comprehensively genomic alterations in lung cancer. Finally, early results from immune checkpoint inhibitors are very encouraging. This review summarizes recent advances in the area of cancer genomics, targeted therapies, and immunotherapy.
Collapse
Affiliation(s)
- Daniel Morgensztern
- Department of Medical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Meghan J. Campo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Suzanne E. Dahlberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston MA
| | - Robert C. Doebele
- Department of Medical Oncology, University of Colorado School of Medicine and University of Colorado Cancer Center, Aurora, CO
| | - Edward Garon
- UCLA Santa Monica Hematology Oncology, Santa Monica, CA
| | - David E. Gerber
- Division of Hematology-Oncology, Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sarah B. Goldberg
- Department of Medical Oncology, Yale School of Medicine and Cancer Center, New Haven, CT
| | | | - Rebecca Heist
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - Thomas Hensing
- Department of Oncology, The University of Chicago Medicine, Chicago, IL
| | - Leora Horn
- Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA
| | | | - Ravi Salgia
- Department of Oncology, The University of Chicago Medicine, Chicago, IL
| | - Lecia Sequist
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - Alice T. Shaw
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - George R. Simon
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC
| | - Neeta Somaiah
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC
| | | | - John Wrangle
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - David Johnson
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Roy S. Herbst
- Department of Medical Oncology, Yale School of Medicine and Cancer Center, New Haven, CT
| | - Paul Bunn
- Division of Medical Oncology, University of Colorado Denver School of Medicine, Denver, CO
| | - Ramaswamy Govindan
- Department of Medical Oncology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
10
|
Prevalence of RET/PTC1 and RET/PTC3 gene rearrangements in Chennai population and its correlation with clinical parameters. Tumour Biol 2014; 35:9539-48. [PMID: 24957039 DOI: 10.1007/s13277-014-1909-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/28/2014] [Indexed: 10/25/2022] Open
Abstract
Thyroid cancer is one of the most common endocrine disorders in the world. In India, about 42 million people suffer from various thyroid disorders. However, based on population-based cancer registry (PBCR) and Chennai cancer registry, thyroid cancer is emerging as a common cancer particularly in Chennai. Papillary thyroid carcinoma is considered as the most prevalent cancer constituting about 80-85 % of thyroid malignancies. Rearranged during transfection (RET)/papillary thyroid carcinoma (PTC) gene rearrangements are one of the major genetic alterations found in papillary thyroid carcinoma. This present study aims at estimating the frequency of RET/PTC1 and RET/PTC3 gene rearrangements in Chennai population and investigating the correlation between RET/PTC gene expressions with clinical parameters. Formalin-fixed paraffin-embedded (FFPE) tumor tissues obtained from 30 patients with papillary thyroid carcinoma were analyzed. Initially, to differentiate classic and follicular variants of papillary thyroid carcinoma samples, immunohistochemistry was performed. Thereafter, total RNA was isolated, and quantitative evaluation of RET/PTC1 and RET/PTC3 gene rearrangements by real-time PCR was performed. Chi-square test was performed to understand the correlation between positive and negative mutations of RET/PTC messenger RNA (mRNA) expression with clinical parameters. RET/PTC3 gene rearrangements were identified in 26/30 (86.67 %) cases, and none of the patient in our series had RET/PTC1 gene rearrangements. There was no statistically significant difference observed between positive and negative mutations of RET/PTC3 mRNA expression with clinic pathological parameters. Our results indicate that RET/PTC3 gene rearrangements are the most prevalent form of rearrangements in PTCs of Chennai population.
Collapse
|
11
|
Association Study of FOS-Like Antigen-2 Promoter Polymorphisms With Papillary Thyroid Cancer in Korean Population. Clin Exp Otorhinolaryngol 2014; 7:42-6. [PMID: 24587880 PMCID: PMC3932348 DOI: 10.3342/ceo.2014.7.1.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/14/2012] [Accepted: 01/02/2013] [Indexed: 11/29/2022] Open
Abstract
Objectives FOS-like antigen-2 (FOSL-2), a member of the FOS gene family, encode leucine zipper proteins that can heterodimerize with proteins of Jun family. Thus, activating protein (AP)-1 transcription factor is formed, has a crucial role in proliferation, differentiation and apoptosis of normal tissue as well as oncogenic transformation and progression. We performed an association study of single nucleotide polymorphisms (SNPs) in the FOSL-2 with papillary thyroid cancer (PTC). We also estimated the relationships between the SNPs and the clinicopathologic characteristics of PTC. Methods One promoter SNPs (rs925255) of FOSL-2 gene were genotyped with direct sequencing method in 94 PTC and 213 controls. PTC patients were dichotomized and compared with respect to clinical parameters of PTC. Genetic data were analyzed using Helixtree, SNPAnalyzer, SNPStats. Multivariate logistic regression analysis was fulfilled to evaluate the genetic effect with adjustment for age and sex. Results SNP (rs925255) in FOSL-2 showed a significant association (codominant 1 model [G/G vs. A/G]: odds ratio [OR], 0.531, 95% confidence interval [CI], 0.293 to 0.96, P=0.036; dominant model: OR, 0.50, 95% CI, 0.28 to 0.89, P=0.015) with PTC. The frequency of allele G in rs925255 was also significantly associated with PTC (OR, 0.59; 95% CI, 0.34 to 0.91; P=0.02). But we fail to prove significant association between this polymorphism (rs925255) and clinico-pathological parameters. Conclusion Our findings suggest that the rs925255 SNP and its allele G show significant association with the PTC in Korean population.
Collapse
|
12
|
Gain of chromosome band 7q11 in papillary thyroid carcinomas of young patients is associated with exposure to low-dose irradiation. Proc Natl Acad Sci U S A 2011; 108:9595-600. [PMID: 21606360 DOI: 10.1073/pnas.1017137108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The main consequence of the Chernobyl accident has been an increase in papillary thyroid carcinomas (PTCs) in those exposed to radioactive fallout as young children. Our aim was to identify genomic alterations that are associated with exposure to radiation. We used array comparative genomic hybridization to analyze a main (n = 52) and a validation cohort (n = 28) of PTC from patients aged <25 y at operation and matched for age at diagnosis and residency. Both cohorts consisted of patients exposed and not exposed to radioiodine fallout. The study showed association of a gain on chromosome 7 (7q11.22-11.23) with exposure (false discovery rate = 0.035). Thirty-nine percent of the exposed group showed the alteration; however, it was not found in a single case from the unexposed group. This was confirmed in the validation set. Because only a subgroup of cases in the exposed groups showed gain of 7q11.22-11.23, it is likely that different molecular subgroups and routes of radiation-induced carcinogenesis exist. The candidate gene CLIP2 was specifically overexpressed in the exposed cases. In addition, the expression of the genes PMS2L11, PMS2L3, and STAG3L3 correlated with gain of 7q11.22-11.23. An enrichment of Gene Ontology terms "DNA repair" (PMS2L3, PMS2L5), "response to DNA damage stimulus" (BAZ1B, PMS2L3, PMS2L5, RFC2), and "cell-cell adhesion" (CLDN3, CLDN4) was found. This study, using matched exposed and unexposed cohorts, provides insights into the radiation-related carcinogenesis of young-onset PTC and, with the exposure-specific gain of 7q11 and overexpression of the CLIP2 gene, radiation-specific molecular markers.
Collapse
|
13
|
Chromosomal rearrangements in post-Chernobyl papillary thyroid carcinomas: evaluation by spectral karyotyping and automated interphase FISH. J Biomed Biotechnol 2011; 2011:693691. [PMID: 21436994 PMCID: PMC3062971 DOI: 10.1155/2011/693691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/12/2011] [Indexed: 12/05/2022] Open
Abstract
Structural genomic rearrangements are frequent findings in human cancers. Therefore, papillary thyroid carcinomas (PTCs) were investigated for chromosomal aberrations and rearrangements of the RET proto-oncogene. For this purpose, primary cultures from 23 PTC have been established and metaphase preparations were analysed by spectral karyotyping (SKY). In addition, interphase cell preparations of the same cases were investigated by fluorescence in situ hybridisation (FISH) for the presence of RET/PTC rearrangements using RET-specific DNA probes. SKY analysis of PTC revealed structural aberrations of chromosome 11 and several numerical aberrations with frequent loss of chromosomes 20, 21, and 22. FISH analysis for RET/PTC rearrangements showed prevalence of this rearrangement in 72% (16 out of 22) of cases. However, only subpopulations of tumour cells exhibited this rearrangement indicating genetic heterogeneity. The comparison of visual and automated scoring of FISH signals revealed concordant results in 19 out of 22 cases (87%) indicating reliable scoring results using the optimised scoring parameter for RET/PTC with the automated Metafer4 system. It can be concluded from this study that genomic rearrangements are frequent in PTC and therefore important events in thyroid carcinogenesis.
Collapse
|
14
|
Establishment and Molecular Cytogenetic Characterization of a Cell Culture Model of Head and Neck Squamous Cell Carcinoma (HNSCC). Genes (Basel) 2010; 1:388-412. [PMID: 24710094 PMCID: PMC3966227 DOI: 10.3390/genes1030388] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 09/30/2010] [Accepted: 10/28/2010] [Indexed: 02/06/2023] Open
Abstract
Cytogenetic analysis of head and neck squamous cell carcinoma (HNSCC) established several biomarkers that have been correlated to clinical parameters during the past years. Adequate cell culture model systems are required for functional studies investigating those potential prognostic markers in HNSCC. We have used a cell line, CAL 33, for the establishment of a cell culture model in order to perform functional analyses of interesting candidate genes and proteins. The cell line was cytogenetically characterized using array CGH, spectral karyotyping (SKY) and fluorescence in situ hybridization (FISH). As a starting point for the investigation of genetic markers predicting radiosensitivity in tumor cells, irradiation experiments were carried out and radiation responses of CAL 33 have been determined. Radiosensitivity of CAL 33 cells was intermediate when compared to published data on tumor cell lines.
Collapse
|
15
|
Zhang Y, Gostissa M, Hildebrand DG, Becker MS, Boboila C, Chiarle R, Lewis S, Alt FW. The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. Adv Immunol 2010; 106:93-133. [PMID: 20728025 PMCID: PMC3073861 DOI: 10.1016/s0065-2776(10)06004-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recurrent chromosomal abnormalities, especially chromosomal translocations, are strongly associated with certain subtypes of leukemia, lymphoma and solid tumors. The appearance of particular translocations or associated genomic alterations can be important indicators of disease prognosis, and in some cases, certain translocations may indicate appropriate therapy protocols. To date, most of our knowledge about chromosomal translocations has derived from characterization of the highly selected recurrent translocations found in certain cancers. Until recently, mechanisms that promote or suppress chromosomal translocations, in particular, those responsible for their initiation, have not been addressed. For translocations to occur, two distinct chromosomal loci must be broken, brought together (synapsed) and joined. Here, we discuss recent findings on processes and pathways that influence the initiation of chromosomal translocations, including the generation fo DNA double strand breaks (DSBs) by general factors or in the context of the Lymphocyte-specific V(D)J and IgH class-switch recombination processes. We also discuss the role of spatial proximity of DSBs in the interphase nucleus with respect to how DSBs on different chromosomes are justaposed for joining. In addition, we discuss the DNA DSB response and its role in recognizing and tethering chromosomal DSBs to prevent translocations, as well as potential roles of the classical and alternative DSB end-joining pathways in suppressing or promoting translocations. Finally, we discuss the potential roles of long range regulatory elements, such as the 3'IgH enhancer complex, in promoting the expression of certain translocations that are frequent in lymphomas and, thereby, contributing to their frequent appearance in tumors.
Collapse
Affiliation(s)
- Yu Zhang
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|