1
|
Thonghlueng J, Ngernpimai S, Chuaephon A, Phanchai W, Wiwasuku T, Wanna Y, Wiratchawa K, Intharah T, Thanan R, Sakonsinsiri C, Puangmali T. Dual-Responsive Carbon Quantum Dots for the Simultaneous Detection of Cytosine and 5-Methylcytosine Interpreted by a Machine Learning-Assisted Smartphone. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40141-40152. [PMID: 37585565 DOI: 10.1021/acsami.3c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
DNA methylation is an epigenetic alteration that results in 5-methylcytosine (5-mC) through the addition of a methyl group to the fifth carbon of a cytosine (C) residue. The methylation level, the ratio of 5-mC to C, in urine might be related to the whole-body epigenetic status and the occurrence of common cancers. To date, never before have any nanomaterials been developed to simultaneously determine C and 5-mC in urine samples. Herein, a dual-responsive fluorescent sensor for the urinary detection of C and 5-mC has been developed. This assay relied on changes in the optical properties of nitrogen-doped carbon quantum dots (CQDs) prepared by microwave-assisted pyrolysis. In the presence of C, the blue-shifted fluorescence intensity of the CQDs increased. However, fluorescence quenching was observed upon the addition of 5-mC. This was primarily due to photoinduced electron transfer as confirmed by the density functional theory calculation. In urine samples, our sensitive fluorescent sensor had detection limits for C and 5-mC of 43.4 and 74.4 μM, respectively, and achieved satisfactory recoveries ranging from 103.5 to 115.8%. The simultaneous detection of C and 5-mC leads to effective methylation level detection, achieving recoveries in the range of 104.6-109.5%. Besides, a machine learning-enabled smartphone was also developed, which can be effectively applied to the determination of methylation levels (0-100%). These results demonstrate a simple but very effective approach for detecting the methylation level in urine, which could have significant implications for predicting the clinical prognosis.
Collapse
Affiliation(s)
- Janpen Thonghlueng
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sawinee Ngernpimai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Adulvit Chuaephon
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Witthawat Phanchai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theanchai Wiwasuku
- Functional Materials and Nanotechnology Center of Excellence, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Yupaporn Wanna
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kannika Wiratchawa
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thanapong Intharah
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Sensitive and Selective Determination of Orotic Acid in Biological Specimens Using a Novel Fluorogenic Reaction. J Fluoresc 2015; 25:1005-11. [PMID: 26026930 DOI: 10.1007/s10895-015-1584-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Orotic acid is an intermediate in the synthesis pathway of uridine-5'-monophosphate, and increases in body fluids of patients suffering from hereditary disorders such as orotic aciduria and hyperammonemia. In this study, we developed a spectrofluorometric method with or without high-performance liquid chromatography for the selective and sensitive quantification of orotic acid in human biological specimens, using 4-trifluoromethylbenzamidoxime (4-TFMBAO) as a fluorogenic reagent. This reagent provided intensive fluorescence for only orotic acid amongst 62 compounds including structurally related bio-substances such as nucleic acid bases, nucleosides, nucleotides, amino acids, vitamins, bilirubin, uric acid, urea, creatine, creatinine and sugars. Under optimized reaction conditions, orotic acid was reacted with 4-TFMBAO, K3[Fe(CN)6] and K2CO3 in an aqueous solution. The fluorescence produced from the orotic acid derivative was measured at an excitation of 340 nm and an emission of 460 nm. A concentration of 1.2 μM orotic acid per 1.0 mM creatinine in normal urine and 0.64 nmol orotic acid per 5.0 × 10(5) HeLa cells were determined by this method. The present method permitted the facile quantification of orotic acid in healthy human urine and cultured HeLa cells by spectrofluorometry and/or high-performance liquid chromatography.
Collapse
|